Supernumary Polylogarithmic Ladders and Related Functional Equations

  • L. Lewin
Conference paper
As discussed in several recent papers(1–7) the polylogarithmic function of order n and argument z can be defined through the series
$$L{i_n}\left( z \right) = \sum\limits_{r = 1}^\infty {{z^r}} /{r^n},\left| z \right|1$$
It satisfies the recursion formula
$$L{i_n}\left( z \right) = \int\limits_0^z {L{i_{n - 1}}} \left( {z'} \right)dz'/z'$$
and this, together with the elementary relation
$$L{i_n}\left( z \right) = - \log \left( {1 - z} \right)$$
extends the definition throughout the complex z-plane.


Functional Equation Real Root Algebraic Number Inversion Formula Numerical Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Lewin, “The Dilogarithm in Algebraic Fields”, J. Austral. Math. Soc. A 33(1982), 302–330.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    L. Lewin, “The Inner Structure of the Dilogarithm in Algebraic Fields”, J. Number Theory 19(1984), 345–373.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    M. Abouzahra and L. Lewin, “The Polylogarithm in Algebraic Number Fields”, J. Number Theory 21(1985), 214–244.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    L. Lewin, “The Order-independence of the Polylogarithmic Ladder Structure — Implications for a New Category of Functional Equations”, Aequationes Math. 30(1986), 1–20.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    L. Lewin and E. Rost, “Polylogarithmic Functional Equations: A New Category of Results Developed with the Help of Computer Algebra (Macsyma)”, Aequationes Math. 31(1986), 223–242.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    M. Abouzahra and L. Lewin, “The Polylogarithm in the Field of Two Irreducible Quintics”, Aequationes Math. 31(1986), 315–321.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    M. Abouzahra, L. Lewin and Xiao Hongnian, “Polylogarithms in the Field of Omega (a Root of a Given Cubic): Functional Equations and Ladders”, Aequationes Math. 33(1987), 23–45.MathSciNetMATHCrossRefGoogle Scholar
  8. 7a.
    M. Abouzahra, L. Lewin and Xiao Hongnian, “Polylogarithms in the Field of Omega (a Root of a Given Cubic): Functional Equations and Ladders” Addendum in 35(1988), 304.Google Scholar
  9. 8.
    G. Wechsung, “über die Unmöglichkeit der Vorkommens von Funktionalgleichungen gewisser Struktur für Polylogarithmen”, Aeauationes Math. 5(1970), 54–62.MathSciNetMATHCrossRefGoogle Scholar
  10. 9.
    J. Browkin, personal communication.Google Scholar
  11. 10.
    L. Euler, “Institutiones Calculi Integralis”, Bd. 1 (1768), 110–113. (see also 12).Google Scholar
  12. 11.
    J. Landen, “Mathematical Memoirs”, Vol. 1 (1780), 112. (see also 12).Google Scholar
  13. 12.
    L. Lewin, “Polylogarithms and Associated Functions”, Elsevier/North-Holland, New York, 1981.MATHGoogle Scholar
  14. 13.
    H. S. M. Coxeter, “The Functions of Schläfli and Lobatschefsky”, Quart. J. Math. Oxford Ser. 6. (1935), 13–29.CrossRefGoogle Scholar
  15. 14.
    M. J. Phillips and D. J. Whitehouse, “Two-dimensional Discrete Properties of Random Surfaces”, Phil. Trans. Rov. Soc. London Ser. A 305(1982), 441–468.MATHCrossRefGoogle Scholar
  16. 15.
    G.Ray, “Linear Relations Involving the Dilogarithm Function”, submitted to the Journal of Number Theory.Google Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • L. Lewin
    • 1
  1. 1.University of ColoradoBoulderUSA

Personalised recommendations