Spectral Invariants of Conformal Metrics

  • Sun-Yung A. Chang
  • Paul C. Yang
Conference paper


On a compact Riemannian manifold (M, g) the Laplace operator \( \Delta = {g^{ - 1/2}}{\partial _i}\left( {{g^{1/2}}{g^{ij}}{\partial _j}} \right) \)acting on functions have discrete spectrum: \( 0 < {\lambda _1} \le {\lambda _2} \le \ldots \)corresponding to the eigenfunctions
$$ \Delta u + {\lambda _i}u = 0 $$


Scalar Curvature Conformal Transformation Sobolev Inequality Plane Domain Conformal Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ad]
    D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Annals of Math. 128(1988), 385–398.MATHCrossRefGoogle Scholar
  2. [An]
    M. Anderson, Remarks on the compactness of isospectral sets in low dimensions, preprint.Google Scholar
  3. [Au1]
    T. Aubin, Equations différentielles non linéaire st problème de Yamabe concemant la courbure scalaire, J. Math. Pures Appli. 55, 269–296.Google Scholar
  4. [Au2]
    T. Aubin, Meilleures constantes dans le théorèm d’inclusion de Sobolev et un théorèm de Fred-holm nonlinéaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal. 32(1979), 148–174.MathSciNetMATHCrossRefGoogle Scholar
  5. [Be]
    W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Ttudinger inequality, preprint.Google Scholar
  6. [BCY]
    T. Branson, S.-Y. A. Chang and P. Yang, Estimates and extremals for zeta function determinants in 4-manifolds, preprint.Google Scholar
  7. [BO1]
    T. Branson and B. Ørsted, Conformal indices of Riemannian manifolds, Compositio Math. 60, 261–293.Google Scholar
  8. BO2.
    T. Branson and B. Ørsted, Explicit functional determinants in four dimensions, to appear, Proc. Amer. Math. Soc.Google Scholar
  9. [BPP]
    R. Brooks, P. Perry, and P. Petersen, Compactness and finiteness theorems for isospectral manifolds, preprint.Google Scholar
  10. [BPY]
    R. Brooks, P. Perry, and P. Yang, Isospectral sets of conformally equivalent metrics, Duke Jour. Math. 58, 131–150.Google Scholar
  11. [Br]
    J. Bruning, On the compactness of isospectral potentials, Comm. in Part. Diff. Equations 9, 687–698.Google Scholar
  12. [CY1]
    S.-Y. A. Chang and P. Yang, Compactness of isospectral conformal metrics on S 3, Comment. Math. Helvetici 64(1989), 363–374.MathSciNetMATHCrossRefGoogle Scholar
  13. [CY2]
    S.-Y. A. Chang and P. Yang, Isospectral onformal metrics on 3-manifolds, Jour. Amer. Math. Society 3, 117–145.Google Scholar
  14. [CY3]
    S.-Y. A. Chang and P. Yang, Prescribing Gaussian curvature on S 2, Acta Math. 159, 215–259.Google Scholar
  15. [CY4]
    S.-Y. A. Chang and P. Yang, Conformal deformation of metrics on S 2, Jour. Differential Geometry 27, 259–296.Google Scholar
  16. CY5] S.-Y. A. Chang and P. Yang, A perturbation result in prescribing scalar curvature on S n, preprint.Google Scholar
  17. [G]
    P. Gilkey, Leading terms in the asymptotics of the heat equation, Contemporary Math. 73, 79–85.Google Scholar
  18. [GW]
    C. Gordon and E. Wilson, Isospectral deformations of compact solvmanifolds, Jour. Differential Geometry 19, 241–256.Google Scholar
  19. [Gu]
    M. Gursky, Cal Tech Thesis, in preparation.Google Scholar
  20. [L]
    R. Lundelius, Stanford thesis.Google Scholar
  21. [MS]
    H. McKean and I. Singer, Curvature and the eigenvalues of the Laplacian, Jour. Diff. Geometry 1, 43–69.Google Scholar
  22. [M]
    R. Melrose, Isospectral sets of drumheads are compact in Cx221E, preprint.Google Scholar
  23. [On]
    E. Onofri, On the positivity of the effective action in a theory of random surfaces, Commun. Math. Phys. 86, 321–326.Google Scholar
  24. [OPS1]
    B. Osgood, R. Phillips, and P. Sarnak, Extremals of determinants of Laplacians, J. Funct. Anal. 80(1988), 148–211.MathSciNetMATHCrossRefGoogle Scholar
  25. [OPS2]
    B. Osgood, R. Phillips, and P. Sarnak, Compact isospectral sets of surfaces, J. Funct. Anal. 80(1988), 212–234.MathSciNetMATHCrossRefGoogle Scholar
  26. [OPS3]
    B. Osgood, R. Phillips, and P. Sarnak, Moduli space, heights, and isospectral set of plane domains, Annals of Math. 129, 293–362.Google Scholar
  27. [PR]
    T. Parker and S. Rosenberg, Invariants of conformal Laplacians, Jour. Diff. Geometry 25, 199–222.Google Scholar
  28. [P]
    A. Polyakov, Quantum geometry of Bosonic strings, Phys. Lett. B 103(1981), 207–210.MathSciNetCrossRefGoogle Scholar
  29. [RS]
    D. Ray and I. Singer, R-torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7, 145–210.Google Scholar
  30. [S]
    R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, Jour. Diff. Geometry 21, 479–495.Google Scholar
  31. [Su]
    T. Sunada, Riemannian coverings and isospectral manifolds, Annals of Math. 121, 169–186.Google Scholar
  32. [W]
    S. Wolpert, Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces, Comm. Math. Physics 112, 283–315.Google Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Sun-Yung A. Chang
    • 1
  • Paul C. Yang
    • 2
  1. 1.Department of MathematicsUCLALos AngelesUSA
  2. 2.Department of MathematicsUSCLos AngelesUSA

Personalised recommendations