Harmonic Analysis with respect to Degenerate Laplacians on Strictly Pseudoconvex Domains

  • Hitoshi Arai
Conference paper


In this paper we will study the harmonic analysis associated with the Laplace- Beltrami operators of the Bergman metrics or other related complete Kahler metrics of strictly pseudoconvex domains. Moreover, for this purpose, we will investigate potential theory for a broad class of open Riemannian manifolds which contains strictly pseudoconvex domains.


Pseudoconvex Domain Positive Borel Measure Martin Boundary Positive Harmonic Function Pseudo Convex Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Ancona, Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann of Math., 125 (1987), 495–536.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    M. Anderson and R. Schoen, Positive harmonic functions on complete manifolds of negative curvature, Ann of Math., 121 (1985), 429–461.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    H. Arai, Estimates of harmonic measures associated with degenerate Laplacian on strictly pseudoconvex domains, Proc. Japan Acad., 66, Ser.A, (1) (1990), 13–15.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math., 26 (1974), 1–65.MathSciNetMATHGoogle Scholar
  5. [5]
    D. Gilberg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer-Verlag, Berlin, Heidelberg, New York Tokyo, 1984.Google Scholar
  6. [6]
    R.-M. Hervé, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier, Grenoble 12 (1962), 415–571.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    S. Ito, Fundamental solutions of parabolic differential equations and boundary value problems, Japan. J. Math., 27 (1957), 55–102.Google Scholar
  8. [8]
    P. F. Klembeck, Kähler metrics of negative curvature, the Bergman metric near the boundary, and the Kobayashi metric on smooth bounded pseudoconvex sets, Indiana Univ. Mathe. J., 27 (1978), 275–282.MathSciNetMATHGoogle Scholar
  9. [9]
    A. Korányi and J. C. Taylor, Fine and admissible convergence for symmetric spaces of rank one, Trans. Amer. Math. Soc., 263 (1981), 169–181.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    S. G. Krantz, Function Theory of Several Complex Variables, John Wiley & Sons, New York, 1982.MATHGoogle Scholar
  11. [11]
    P. Malliavin, Fonctions de Green d’un ouvert strictement pseudo-convexe et classe de Nevanlinna, C. R. Acad. Sci. Paris, 278 (1974), 141–144.MathSciNetMATHGoogle Scholar
  12. [12]
    T. Sasaki, On the Green functioin of a complete Remannian or Kähler manifold with asymptotically negative constant curvature and applications, Advanced Studies in Pure Math., 3 (1984), 387–421.Google Scholar
  13. [13]
    E. M. Stein, Boundary Behavior of Holomorphic Functions of Several Complex Variables, Princeton Univ. Press 1972.MATHGoogle Scholar
  14. [14]
    J. C. Taylor, Fine and admissible convergence for the unit ball in Cn (Proc. 1979 Copenhagen Potential Theory Colloquium, 1979), Lect. Notes in Math., vol 787, Springer-Verlag, Berlin and New York (1980), 299–315.Google Scholar
  15. [15]
    Potential Theory, Surveys and Problems, Proceedings, Prague 1987 (J. Král, J. Lukeš, I. Netuka and J. Veselý (Eds.)), Lect Notes in Math., vol.1344, Springer-Verlag, Berlin and New York, 1987.Google Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Hitoshi Arai
    • 1
  1. 1.Mathematical InstituteTohoku UniversitySendaiJapan

Personalised recommendations