Parabolic Harnack Inequalities and Riesz Transforms on Lie Groups of Polynomial growth

  • George Alexopoulos


Let Gbe a connected Lie group of polynomial growth, i.e. if dgis a left invariant Haar measure and Va compact neighborhood of the identity element eof G, then there are constants c, d> 0 such that dg — measure(V n ) ≤ cn d , n∈ N. Notice that the connected nilpotent Lie groups are of polynomial growth.


Vector Field Polynomial Growth Homogeneization Theory Homogenise Operator Left Invariant Vector Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D.C. Aronson, Bounds for the fundamental solution of a parabolic equation, Bull. Arner. Math. Soc. 73, (1967), 890–896.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    M. Avelaneda and F.H. Lin, Compactness methods in the theory of Homogeneization, Comm. Pure Appl. Math. 40(1987), 803–847.MathSciNetCrossRefGoogle Scholar
  3. [3]
    M. Avelaneda and F.H. Li, Un théorème de Liouvile pour des équations elliptiques avec coefficients périodiques, C.R. Acad. Paris, t. 609, serie I, p. 245–250, 1989.Google Scholar
  4. [4]
    A. Bensoussa, J.L. Lions and G. Papanicolaou, Asymptotic analysis of periodic structures, North Holland Publ., 1978.Google Scholar
  5. [5]
    R. Coifman and G. Weis, Lecture Notes in Mathematices, Sringer-Verlag, 1984Google Scholar
  6. [6]
    G. David and J.L. Journé, A boundedness criterion for generalised Calderon-Zygmund operators, Annals of Math., 120, nol2, (1984), 371–378.MATHCrossRefGoogle Scholar
  7. [7]
    G.B. Folland and E. Stein, Hardy spaces on Homogeneous groups, Princeton University Press, 1982.Google Scholar
  8. [8]
    Y. Guivarch, Croissance polynômiale et périodes de fonctions harmoniques, Bull. Sc. Math. France, 101(1973), 149–152.MathSciNetGoogle Scholar
  9. [9]
    L. Hormander, Hypoelliptic second order operators, Acta Math. 119 (1967), 147–171.MathSciNetCrossRefGoogle Scholar
  10. [10]
    L. Saloff-Coste, Analyse sur les groupes de Lie à croissance polynômiale, C.R. Acad. Paris, 309, serie I, 1989, p. 149–152.MathSciNetMATHGoogle Scholar
  11. [11]
    E. Stein, Singular integrals and differentiability properties of functions, Ann. of Math. Studies (1976)Google Scholar
  12. [12]
    E. Stein, Topics in Harmonic Analysis, Princeton University Press, 1970.MATHGoogle Scholar
  13. [13]
    V.S. Varadarajan, Lie groups, Lie algebras and their representations, Springer-Verlag, 1984.MATHGoogle Scholar
  14. [14]
    N. Th. Varopoulos, Fonctions harmoniques positives sur les groupes de Lie, C.R. Acad. Paris, 309, serie I, 1987, p. 519–521.MathSciNetGoogle Scholar
  15. [15]
    N. Th. Varopoulos, Analysis on Lie groups, J. Funct. Anal., 76, no 2, 1988, p. 346–410.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    N. Th. Varopoulos, Lecture Notes, Université de Paris VI, Notes taken by L. Saloff-Coste and T. Coulhon.Google Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • George Alexopoulos
    • 1
  1. 1.Department of MathematicsMcGill UniversityMontrealCanada

Personalised recommendations