Advertisement

State Equation and Phase Diagram for Fractal Growth in Ball Lightning

  • G. C. Dijkhuis

Abstract

A state equation for electron pressure in ball lightning plasma is derived by interpolating classical and quantum limits for pressure of free electrons with attractive exchange interaction. Vanderwaals-like isotherms with critical temperature 184-4- K are shown in phase diagrams of this state equation. The locus of electron fractions coexisting at different density is obtained with Maxwell’s lever rule. A subregion of the phase diagram is obtained where universal phase separation dynamics creates structures with fractal dimension.Their relevance to fractal growth in ball lightning, fireballs and laser ablation experiments is considered.

Keywords

Fractal Dimension Quantum Limit Fractal Growth Lightning Discharge Electron Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Egely G (1987) Hungarian Ball Lightning Observations (Case 1 - 278). Central Research Institute for Physics, Budapest, Preprint KFKI-1987-10/DGoogle Scholar
  2. 2.
    Ohtsuki YH (ed) (1989)Science of ball lightning (fireball). World Scientific Publishing Co., SingaporeGoogle Scholar
  3. 3.
    Smirnov BM (1987) The properties and the nature of ball lightning. Physics Reports 152: 177–226CrossRefGoogle Scholar
  4. 4.
    Koloc PM (1977) Method and apparatus for generating and utilizing a compound plasma configuration. United States Patent 4,023, 065Google Scholar
  5. 5.
    Dijkhuis GC (1979) Thermonuclear energy from ball lightning. In: Proceedings of the 14th IECEC (Boston). American Chemical Society. Washington D.C. p1614Google Scholar
  6. 6.
    Altschuler MD. House LL. Hildner E (1970) Is ball lightning a nuclear phenomenon? Nature 228: 545–546.CrossRefGoogle Scholar
  7. 7.
    Neugebauer Th. (1937) Zu dem Problem des Kugelblitzes. Z. f.Physik 106: 474–484CrossRefGoogle Scholar
  8. 8.
    Dijkhuis GC (1980) A model for ball lightning. Nature 284: 150–151.CrossRefGoogle Scholar
  9. 9.
    Dijkhuis GC (1982) Threshold current for fireball generation. J Appl Phys 53: 516–519CrossRefGoogle Scholar
  10. 10.
    Finkelstein D., Rubinstein J, (1964) Ball lightning. Phys Rev 135A: 390–396Google Scholar
  11. 11.
    Kapitza PL (1955) The nature of ball lightning. Dokl Acad Nauk USSR: 245–248Google Scholar
  12. 12.
    Silberg PA (1981) On the formation of ball lightning. Nuovo Cimento 14C: 221–235MathSciNetGoogle Scholar
  13. 13.
    Barry JD ( 1980 ) Ball lightning and bead lightning. Plenum Press. New York LondonGoogle Scholar
  14. 14.
    Ohtsuki YH (1989) Private communicationGoogle Scholar
  15. 15.
    Tuck JL. (1971) Ball lightning, a status summary to november 1971. Informal Report LA-4847-MS, Los AlamosGoogle Scholar
  16. 16.
    Dijkhuis GC (1985) Het fase-diagram van bolbliksem: model en test. Ned. Tijd- schift voor Natuurkunde B51: 125, 128.Google Scholar
  17. 17.
    Shah GN., Razdan H. Bhatt CI., Ali QM (1985) Neutron generation in lightning bolts. Nature 313: 773–775.CrossRefGoogle Scholar
  18. 18.
    Dijkhuis GC (1988) Scaling law for fusion power from boson vortex in ball lightning Janiszewski J. Moron W. Sega W (eds) Ninth international Wroclaw symposium on electromagnetic compatibility. Wroclaw, Poland. p21Google Scholar
  19. 19.
    Fetter AL., Walecka JD (1971) Quantum theory of many-particle systems. McGraw-Hill Book Company. New York Düsseldorf SydneyGoogle Scholar
  20. 20.
    Orville RE (1977) Lightning spectroscopy. In: Golde RH (ed) Lightning, volume 1. Academic Press. London New York San Francisco. p281Google Scholar
  21. 21.
    US Standard Atmosphere (1987) In: Weast RC (ed) CRC Handbook of chemistry and physics. 67th edn. CRC Press. Boca Raton, Florida p. F-141Google Scholar
  22. 22.
    Mandelbrot BB (1977) The fractal geometry of nature. W.H. Freeman. New YorkGoogle Scholar
  23. 23.
    Rouw PW., Woutersen A., Eckerson B., de Kruif CG (1989) Adhesive hard sphere dispersion V: observation of spinodal decomposition in a colloidal dispersion. Physica A 125: 1–25Google Scholar
  24. 24.
    Corum KL., Corum JF. (1990) High-voltage rf ball lightning experiments. Soviet Physics Uspekhi (in press)Google Scholar
  25. 25.
    Smirnov BM (submitted) The evolution of non-equilibrium laser plasma of metals with the formation of structures. Chem. Phys. Lett.Google Scholar
  26. 26.
    Jansen L (1988) Model analysis of superconductivity in TI-Ca-Ba-Cu-0 and Bi-Ca- Sr-Cu-O compounds in terms of exchange-induced Cooper pair formation via oxygen anions. Physica C 156: p501Google Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • G. C. Dijkhuis
    • 1
    • 2
  1. 1.Zeldenrust College, TerneuzenRotterdamThe Netherlands
  2. 2.Convectron N.V.RotterdamThe Netherlands

Personalised recommendations