Advertisement

Radio Sky Mapping from Satellites at Very Low Frequencies

  • L. R. O. Storey

Abstract

Wave Distribution Function (WDF) Analysis is a procedure for making sky maps of the sources of natural electromagnetic waves in space plasmas, given local measurements of some or all of the three magnetic and three electric field components. The work that still needs to be done on this subject includes solving basic methodological problems, translating the solutions into efficient algorithms, and embodying the algorithms in computer software. One important scientific use of WDF analysis is to identify the mode of origin of plasmaspheric hiss. Suitable data for this purpose are likely to come from the Japanese satellite Akebono (EXOS-D).

Keywords

Magnetic Equator Whistler Mode Wave Normal Angle Electromagnetic Wave Field Plasmaspheric Hiss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

WDF Analysis

  1. 1.
    Storey, L.R.O., and Lefeuvre, F. (1974) Theory for the interpretation of measurements of a random electromagnetic wave field in space. In: Rycroft, M.J. and Reasenberg, R.E. (eds), Space Research, vol. 14, pp. 381–386, Akademie-Verlag, Berlin.Google Scholar
  2. 2.
    Lefeuvre, F., and Storey, L.R.O. (1977) The analysis of 6-component measurements of a random electromagnetic wave field in a magnetoplasma: - Model identification, CNRS Center for Research in Physics of the Environment, Orleans, France, Technical Report No. CRPE/41.Google Scholar
  3. 3.
    Lefeuvre, F. (1977) Analyse de champs d’ondes électromagnétiques aléatoires observés dans la magnétosphère à partir de la mesure simultanée de leurs six composantes (Analysis of random electromagnetic wave fields in the magnetosphere, based on simultaneous measurements of their six components), State Doctorate Thesis, University of Orléans, France.Google Scholar
  4. 4.
    Buchalet, L.J. (1979) Analyse de champs d’ondes électromagnétiques à partir de modèles à une ou deux directions privilégiées (Analysis of electromagnetic wave fields, based on models with one or two privileged directions), Third Cycle Thesis, University of Orléans, France.Google Scholar
  5. 5.
    Lefeuvre, F., and Delannoy, C. (1979) Analysis of a random electromagnetic wave field by a maximum entropy method, Ann. Télécomm. 34: 204–213.Google Scholar
  6. 6.
    Storey, L.R.O., and Lefeuvre, F. (1979) The analysis of 6-component measurements of a random electromagnetic wave field in a magnetoplasma: - I. The direct problem, Geo- phys. J. R. astr. Soc. 56: 255–270.Google Scholar
  7. 7.
    Storey, L.R.O., and Lefeuvre F. (1980) The analysis of 6-component measurements of a random electromagnetic wave field in a magnetoplasma: - 2. The integration kernels, Geo- phys. J. R. astr. Soc. 62: 173–194.Google Scholar
  8. 8.
    Lefeuvre, F., Parrot, M., and Delannoy, C. (1981) Wave distribution functions estimation of VLF electromagnetic waves observed onboard GEOS 1, J. Geophys. Res. 86: 2359–2375.CrossRefGoogle Scholar
  9. 9.
    Buchalet, L.J., and Lefeuvre, F. (1981) One and two direction models for VLF electromagnetic waves observed on-board GEOS 1, J. Geophys. Res. 86: 2377–2383.CrossRefGoogle Scholar
  10. 10.
    Delannoy, C., and Lefeuvre, F. (1981) Logiciel de resolution d’un problème inverse à 1 variable: - 1. Expose des méthodes, (Software for the solution of an inverse problem with 1 variable: - 1. Description of the methods), CNRS Center for Research in Physics of the Environment, Orleans, France, Technical Report No. CRPE/80.Google Scholar
  11. 11.
    Delannoy, C., and Lefeuvre, F. (1981) Logiciel de resolution d’un problème inverse à 1 variable: - 2. Documentation d’utilisation, (Software for the solution of an inverse problem with 1 variable: - 2. Users’ guide), CNRS Center for Research in Physics of the Environment, Orleans, France, Technical Report No. CRPE/81.Google Scholar
  12. 12.
    Lefeuvre, F., Neubert, T., and Parrot, M. (1982) Wave normal directions and wave distribution functions for ground-based transmitter signals observed on GEOS-1, J. Geophys. Res. 87: 6203–6217.CrossRefGoogle Scholar
  13. 13.
    Lefeuvre, F., and Lagoutte, D. (1983) Bias for spectral density estimates of electromagnetic wave field components in a magnetoplasma, Ann. Geophys. 1: 265–270.Google Scholar
  14. 14.
    Lefeuvre, F., Parrot, M., Storey, L.R.O., and Anderson, R.R. (1983) Wave distribution functions for plasmaspheric hiss observed on board ISEE-1, CNRS Laboratory for Physics and Chemistry of the Environment, Orléans, France, Technical Report No. LPCE/6.Google Scholar
  15. 15.
    Storey, L.R.O. (1984) The energy density of electromagnetic waves in a cold magnetoplasma, J. Plasma Phys. 32: 309–318.CrossRefGoogle Scholar
  16. 16.
    Hayakawa, M., Yamanaka, Y., Parrot, M., and Lefeuvre, F. (1984), The wave normals of magnetospheric chorus emissions observed on board GEOS 2, J. Geophys. Res. 89: 2811— 2821.Google Scholar
  17. 17.
    Lagoutte, D., and Lefeuvre, F. (1985) Multispectral analysis for electromagnetic wave field components in a magnetoplasma: application to narrow-band VLF emissions, J. Geophys. Res. 90: 4117–4127.CrossRefGoogle Scholar
  18. 18.
    Lefeuvre, F., and Helliwell, R.A. (1985) Characterization of the sources of VLF hiss and chorus observed on GEOS 1, J. Geophys. Res. 90: 6419–6438.CrossRefGoogle Scholar
  19. 19.
    Beghin, C., Cerisier, J.C., Rauch, J.L., Berthelier, J.J., Lefeuvre, F., Debrie, R., Maltseva, O.A., and Massevitch, N.I. (1985) Experimental evidence of field-aligned ELF plasma ducts in the ionospheric trough and in the auroral zone, In: Résultats du Projet ARC AD 3 et des Programmes Récents en Physique de la Magnétosphère et de l’Ionosphère (Results from the ARCAD 3 Project and Recent Programs in Magnetospheric and Ionospheric Physics), Cepadues Editions, Toulouse, France, pp. 517–527.Google Scholar
  20. 20.
    Hayakawa, M., Ohmi, N., Parrot, M., and Lefeuvre, F. (1986) Direction finding of ELF hiss emissions in a detached plasma region of the magnetosphere, J. Geophys. Res. 91: 135–141.CrossRefGoogle Scholar
  21. 21.
    Hayakawa, M., Parrot, M., and Lefeuvre, F. (1986) The wave normals of ELF hiss emissions observed onboard GEOS 1 at the equatorial and off-equatorial regions of the plasmasphere, J. Geophys. Res. 91: 7899–7999.Google Scholar
  22. 22.
    Parrot, M., and Lefeuvre, F. (1986) Statistical study of the propagation characteristics of ELF hiss observed on GEOS-1, inside and outside the plasmapause, Ann. Geophys. 4, 363–384.Google Scholar
  23. 23.
    Cairo, L., and Lefeuvre, F. (1986) Localization of sources of ELF/VLF hiss observed in the magnetosphere: three-dimensional ray-tracing, J. Geophys. Res. 91: 4352–4364.CrossRefGoogle Scholar
  24. 24.
    Delannoy, C., and Lefeuvre, F. (1986) MAXENTWDF - A computer program for the maximum entropy estimation of a wave distribution function, Comput. Phys. Comm. 40: 389–419.CrossRefGoogle Scholar
  25. 25.
    Hayakawa, M., Parrot, M., and Lefeuvre, F. (1987) The wave distribution functions of plasmaspheric ELF hiss: GEOS 1 observation in the equatorial region, Mem. Natl. Inst. Polar Res. ( Japan ), Spec. Issue, 47: 157–172.Google Scholar
  26. 26.
    Hayakawa, M. (1987) The generation mechanism of ELF hiss in detached plasma regions of the magnetosphere, as based on the direction finding results, Mem. Natl. Inst. Polar Res. ( Japan ), Spec. Issue, 47: 173–182.Google Scholar
  27. 27.
    Muto, H., Hayakawa, M., Parrot, M., and Lefeuvre, F. (1987) Direction finding of half- gyro-frequency VLF emissions in the off-equatorial region of the magnetosphere and their generation and propagation, J. Geophys. Res. 92: 7538–7550.CrossRefGoogle Scholar
  28. 28.
    Storey, L.R.O. (1987) Final project report on wave distribution function analysis of plasmaspheric hiss (Prepared under NSF Grant No. ATM-8318186), Space, Telecommunications, and Radioscience Laboratory, Stanford University, Technical Report No. D-711-2.Google Scholar
  29. 29.
    Ronnmark, K. (1987) The evolution of spectral densities in weakly inhomogeneous plasmas, J. Geophys. Res. 92: 11,053–11, 058.Google Scholar
  30. 30.
    Ronnmark, K., and Larsson, J. (1988) Local spectra and wave distribution functions, J. Geophys. Res. 93: 1809–1815.CrossRefGoogle Scholar
  31. 31.
    Oscarsson, T.E., and Ronnmark, K.G. (1989) Reconstruction of wave distribution functions in warm plasmas, J. Geophys. Res. 94: 2417–2428.CrossRefGoogle Scholar
  32. 32.
    Storey, L.R.O., and Chapron, S. (1988) Conditions for the existence and uniqueness of solutions to a constrained linear inverse problem, Inverse Problems, 4: 249–271.CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Hayakawa, M., Hattori, K., Shimakura, S., Parrot, M., and Lefeuvre, F. (1990) Direction finding of chorus emissions in the outer magnetosphere and their generation and propagation, Planet. Space Sci., 38: 135–143.CrossRefGoogle Scholar

Plasmaspheric hiss

  1. 34.
    Cornwall, J.M. (1965) Cyclotron instabilities and electromagnetic emission in the ultra-low and very low frequency ranges, J. Geophys. Res. 70: 61–69.CrossRefGoogle Scholar
  2. 35.
    Kennel, C.F., and Petschek, H.E. (1966) Limit on stably trapped particle fluxes, J. Geophys. Res. 71: 1–28.Google Scholar
  3. 36.
    Dunckel, N., and Helliwell, R.A. (1969) Whistler-mode emissions on the OGO-1 satellite, J. Geophys. Res. 74: 6371–6385.CrossRefGoogle Scholar
  4. 37.
    Russell, C.T., R.E. Holzer, and E.J. Smith, OGO-3 observations of ELF noise in the magnetosphere: 1 - Spatial extent and frequency of occurrence, J. Geophys. Res., 74, 755–777, 1969.CrossRefGoogle Scholar
  5. 38.
    Russell, C.T., McPherron, R.L., and Coleman, P.J. (1972) Fluctuating magnetic fields in the magnetosphere: 1 - ELF and VLF fluctuations, Space Sci. Rev. 12: 810–856.CrossRefGoogle Scholar
  6. 39.
    Thorne, R.M., Smith, E.J., Burton, R.J., and Holzer, R.E. (1973) Plasmaspheric hiss, J. Geophys. Res. 78: 1581–1596.CrossRefGoogle Scholar
  7. 40.
    Etcheto, J., Gendrin, R., Solomon, J., and Roux, A. (1973) A self-consistent theory of magnetospheric ELF hiss, J. Geophys. Res. 78: 8150–8166.CrossRefGoogle Scholar
  8. 41.
    Chan, K.W., and Holzer, R.E., (1974) ELF hiss associated with plasma density enhancements in the outer magnetosphere, J. Geophys. Res. 81: 2267–2274.CrossRefGoogle Scholar
  9. 42.
    Parady, B.K., Eberlein, D.D., Marvin, J.A., Taylor, W.W.L., and Cahill, L.J. Jr. (1975) Plasmaspheric hiss observations in the evening and afternoon quadrants, J. Geophys. Res. 80: 2183–2198.Google Scholar
  10. 43.
    Thorne, R.M., Church, S.R., and Gorney, D.J. (1979) On the origin of plasmaspheric hiss: the importance of wave propagation and the plasmapause, J. Geophys. Res. 84: 5241–5247.CrossRefGoogle Scholar
  11. 44.
    Koons, H.C., The role of hiss in magnetospheric chorus emissions, J. Geophys. Res. 86: 6745–6754.Google Scholar
  12. 45.
    Church, S.R., and Thorne, R.M. (1983) On the origin of plasmaspheric hiss: ray path integrated amplification, J. Geophys. Res. 88: 7941–7957.Google Scholar
  13. 46.
    Huang, C.Y., and Goertz, C.K. (1983) Ray-tracing studies and path-integrated gains of ELF unducted whistler-mode waves in the earth’s magnetosphere, J. Geophys. Res. 88: 6181–6187.CrossRefGoogle Scholar
  14. 47.
    Huang, C.Y., Goertz, C.K., and Anderson, R.R. (1983) A theoretical study of plasmaspheric hiss generation, J. Geophys. Res. 88: 7927–7940.CrossRefGoogle Scholar
  15. 48.
    Cornilleau-Wehrlin, N., Solomon, J., Korth, A., and Kremser, G. (1985) Experimental studyof the relationship between energetic electrons and ELF waves observed on-board GEOS: a support to quasilinear theory, J. Geophys. Res. 90: 4141–4154.CrossRefGoogle Scholar
  16. 49.
    Helliwell, R.A., Carpenter, D.L., Inan, U.S., and Katsufrakis, J.P. (1986) Generation of band-limited VLF noise using the Siple transmitter: a model for magnetospheric hiss, J. Geophys. Res. 91: 4381–4392.Google Scholar
  17. 50.
    Solomon, J., Cornilleau-Wehrlin, N., Korth, A., and Kremser, G. (1988) An experimental study of ELF/VLF hiss generation in the Earth’s magnetosphere, J. Geophys. Res. 93: 1839–1847.CrossRefGoogle Scholar
  18. 51.
    Sonwalkar, V.S., and Inan, U.S. (1988) Wave normal direction and spectral properties of whistler mode hiss observed on the DE-1 satellite, J. Geophys. Res. 93: 7493–7514.CrossRefGoogle Scholar
  19. 52.
    Koons, H.C. (1989) Observations of large-amplitude, whistler mode wave ducts in the outer plasmasphere, J. Geophys. Res. 94: 15,393–15, 397.Google Scholar
  20. 53.
    Sonwalkar, V.S., and Inan, U.S. (1989) Lightning as an embryonic source of VLF hiss, J. Geophys. Res. 94: 6986–6994.CrossRefGoogle Scholar

Related Subjects

  1. 54.
    Smith, R.L. (1961) Propagation characteristics of whistlers trapped in field-aligned columns of enhanced ionization, J. Geophys. Res. 66: 3669–3707.Google Scholar
  2. 55.
    Inan, U.S., and Bell, T.F. (1977) The plasmapause as a wave guide, J. Geophys. Res. 82: 2819–2827.CrossRefGoogle Scholar
  3. 56.
    Agmon, N., Alhassid, Y., and Levine, R.D. (1979) An algorithm for finding the distribution of maximal entropy, J. Comput. Phys. 30: 250–258.CrossRefMATHGoogle Scholar
  4. 57.
    Kirkpatrick, S., Gelatt, C.D. Jr., and Vecchi, M.P. (1983) Optimization by simulated annealing, Science, 220: 671–680.CrossRefMATHMathSciNetGoogle Scholar
  5. 58.
    Sonwalkar, V.S., and Inan, U.S. (1986) Measurements of Siple transmitter signals on the DE 1 satellite: wave normal direction and antenna effective length, J. Geophys. Res. 91: 154–164.Google Scholar
  6. 59.
    Cameron, A.C., and Home, K.D. (1986) Maximum entropy reconstruction of starspot distributions. In: Zeilik, M. and Gibson, D.M. (eds), Cool Stars, Stellar Systems, and the Sun, pp. 205–208, Springer, Berlin.CrossRefGoogle Scholar
  7. 60.
    Thome, R.M., and Summers, D. (1988) On the marginal stability criterion for a loss-cone distribution, Ann. Geophys. 6: 275–286.Google Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • L. R. O. Storey
    • 1
  1. 1.National Space Science Data Center (Code 630.2)NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations