Advertisement

Characteristics of LF Whistler-Mode Waves Observed in Conjugate Area at Low Latitudes

  • Y. Tanaka
  • M. Nishino

Abstract

Based on measurements of whistler-mode waves of Decca navigation signals in the magnetic conjugate area of the transmitters around Birdsville (L=l.55), Australia, characteristics of LF whistler-mode waves are indicated. The shift of transmitter frequency and the signal intensity increase are discussed mainly in relation to geomagnetic activities. Storm-related energetic electrons and magnetospheric electric fields penetrating into the low-latitude magneto- sphere may generate the intensity increase and the frequency shift. Also, the ducted propagation of LF whistler-mode signals is clarified.

Keywords

Doppler Shift Magnetic Storm Energetic Electron Conjugate Point Quiet Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews MK., Thomson NR., (1977) Doppler shifts on whistler mode signals received at Siple station,Antarctica. Geophys. Res.Lett. 10: 399–401CrossRefGoogle Scholar
  2. 2.
    Andrews MK., Knox FB., Thomson NR., (1978) Magnetospheric electric fields and protonospheric coupling fluxes inferred from simultaneous phase and group path merasurements on whistler-mode signals. Planet. Space Sci. 26: 171–183CrossRefGoogle Scholar
  3. 3.
    Andrews MK., (1980) Night-time radial plasma drifts and coupling fluxes at L=2.3 from whistler-mode measurements. Planet.Space Sci. 28: 407–417CrossRefGoogle Scholar
  4. 4.
    Carpenter DL., Stone K., Siren JC., Crystal TL., (1972) Magnetospheric electric fields deduced from drifting whistler path. J. Geophys. Res. 77: 2819–2834CrossRefGoogle Scholar
  5. 5.
    Cayton TT., Belian RD., Gary SP., Fritz TA., Baker DN., (1989) Energetic electron components at geosynchronous orbit. Geophys.Res.Lett. 16: 147–150CrossRefGoogle Scholar
  6. 6.
    Gendrin R., Lacourly S., Roux A., Solomon J., Feigin FZ., Gokhberg MV., Troitskaya VA., Yakimenko VL., (1971) Wave packet propagation in an amplifying medium and its application to the dispersion characteristics and to the generation mechanisms of Pc 1 events. Planet.Space Sci. 19: 165–194CrossRefGoogle Scholar
  7. 7.
    Gonzalez WD., Pinto Jr O., Mendes Jr O., Mozer FS., (1986) Large plasmaspheric electric fields at L=2 measured by the S3 -3 satellite during strong geomagnetic activity. Geophys. Res. Lett. 13: 363–365CrossRefGoogle Scholar
  8. 8.
    Hayakawa M., Tanaka Y., Ohtsu J., (1975) Satellite and ground observations of magnetospheric VLF hiss associated with the severe magnetic storm on May 25–27,1967. J.Geophys.Res. 80: 86–92CrossRefGoogle Scholar
  9. 9.
    Hayakawa M., Tanaka Y., (1978) On the propagation of low- latitude whistlers. Rev. Geophys. Space Phys. 16: 111–123CrossRefGoogle Scholar
  10. 10.
    Hayakawa M., Tanaka Y., Shimakura S., Iizuka A., (1986) Statistical characteristics of medium latitude VLF emissions (unstructured and structured):local time dependence and the association with geomagnetic disturbances. Planet. Space Sci. 34: 1361–1372CrossRefGoogle Scholar
  11. 11.
    Helliwell RA., (1965) Whistlers and Related Ionospheric Phenomena. Stanford Univ.Press, Stanford Calif.Google Scholar
  12. 12.
    Helliwell RA., (1979) Siple station experiments on wave- particle interactions in the magnetosphere, Wave instabilities in space plasmas. Reidel Pub. Company: 191–203Google Scholar
  13. 13.
    Imhof WL., Reagan JB., Gaines EE., Datlowe DW., (1984) The L shell region of importances for waves emitted at ground level as a loss mechanism for trapped electrons 68 keV. J.Geophys.Res. 89: 10, 827–10Google Scholar
  14. 14.
    Iwai A., Katoh Y., Nishino M., Okada T., Hayakawa M., Tanaka Y., (1985) Ground-based reception of the whistler-mode Decca signals. Proc.Res.Inst.Atmos.,Nagoya Univ. 32: 29–44Google Scholar
  15. 15.
    Kennel CF., Petschek HE., (1966) Limit of stably trapped particle fluxes J.Geophys.Res. 71: 1–28Google Scholar
  16. 16.
    Kikuchi T., Evans DS, (1989) Energetic electrons observed by NOAA-6 over Japan(L=1.3) at the time of geomagnetic storm on February 8–9,1986. Proc.Res.Inst.Atmos.,Nagoya Univ. 36,No. 2: 137–150Google Scholar
  17. 17.
    Matsushita S., (1971) Interactions between the ionosphere and magnetosphere for Sq and L variations. Radio Sci. 6: 279–294CrossRefGoogle Scholar
  18. 18.
    McNeil FA., Andrews NK., (1975) Quiet-time characteristics of middle latitude whistler-mode signals during an 8-yr period. J.Atmos.Terr.Phys. 37: 531–543CrossRefGoogle Scholar
  19. 19.
    Mozer FS., (1970) Electric field mapping in the ionosphere at the equatorial planes. Planet. Space Sci. 18: 259–263CrossRefGoogle Scholar
  20. 20.
    Nagata K., Kohno T., Murakami H., Nakamoto A., Hasebe N., Kikuchi J., Doke T., (1988) Electron(0.19–3.2 MeV) and pro ton(0.58–35 MeV) precipitation observed by OHZORA satellite at low latitude zones L= 1.6–1.8. Planet.Space Sci. 36: 591–606CrossRefGoogle Scholar
  21. 21.
    Nakata Y., (1968) Variations of total electron content in the ionospheric F region(in Japanese). Rev. Radio Res.Lab. 14, 70: 169–174Google Scholar
  22. 22.
    Nishino M., Tanaka Y., Lynn KJW., (1989) Doppler shifts of LF whistler-mode signal observed at a low latitude(L=1.54). Planet.Space Sci. 37: 825–836CrossRefGoogle Scholar
  23. 23.
    Okada T., Iwai A., Hayakawa M., (1981) A new whistler direct ion finder. J.Atmos.Terr.Phys. 43: 679–691CrossRefGoogle Scholar
  24. 24.
    Ohtsu J., Kashiwagi M., (1979) An unusual VLF noise event observed at Sakushima on September 29,1978. Proc.Res.Inst. Atmos.,Nagoya Univ. 26: 133–143Google Scholar
  25. 25.
    Park CG., (1970) Whistler observations of the interchange of ionization between the ionosphere and the protonosphere. J.Geophys. Res. 75: 4249–4260Google Scholar
  26. 26.
    Pitteway MLV., Jespersen JL., (1966) A numerical study of the excitation,internal reflection and limiting polarization of whistler waves in the low ionosphere. J.Atmos.Terr.Phys. 28: 17–43CrossRefGoogle Scholar
  27. 27.
    Smith AJ., Yearby KH., Bullough K., Saxton JM., Strangeways HJ., Thomson NR., (1987) Whistler mode signals from VLF trans mitters observed at Faraday,Antarctica. Memo. Natl Inst. Polar Res., Spec. Issue, 48: 183–195Google Scholar
  28. 28.
    Tanaka Y., Hayakawa M., Ohtsu J., (1974) VLF hiss observed at a low-latitude ground station and its relation to drift ing ring current electrons. Rep.Iono.Space Res.Japan 28: 168–172Google Scholar
  29. 29.
    Tanaka Y., Cairo L., (1980) Propagation of VLF waves through the equatorial anomaly. Ann.Geophys. 36: 555–575Google Scholar
  30. 30.
    Tanaka Y., Hayakawa M., (1985) On the propagation of daytime whistlers at low latitudes. J.Geophys.Res. 90: 3457–3464Google Scholar
  31. Tanaka Y., Hayakawa M., (1985) On the propagation of daytime whistlers at low latitudes. J.Geophys.Res. 90: 3457–3464CrossRefGoogle Scholar
  32. 32.
    Tanaka Y., Nishino M., Lynn KJW., (1989) On the propagation of LF whistler-mode waves deduced from conjugate measure ments at low latitudes. Planet. Space Sci. 37: 1215–1226CrossRefGoogle Scholar
  33. 33.
    Tanaka Y., Nishino M., Lynn KJW., (1990) Magnetic storm related energetic electrons and magnetospheric electric fields penetrating into the low-latitude magnetosphere (L-1.5). Planet.Space Sci. 38: 1051–1059CrossRefGoogle Scholar
  34. 34.
    Thomson NR., (1976) Causes of the frequency shift of whistler-mode signals. Planet.Space Sci. 24: 447–458CrossRefGoogle Scholar
  35. 35.
    Thomson NR., (1976) Electric fields from whistler-mode Doppler shifts. Planet. Space Sci. 24: 455–458CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Y. Tanaka
    • 1
  • M. Nishino
    • 1
  1. 1.Solar-Terrestrial Environment LaboratoryNagoya UniversityAichiJapan

Personalised recommendations