Skip to main content

Context Sensitive Normal Estimation for Volume Imaging

  • Conference paper
Scientific Visualization of Physical Phenomena

Abstract

Three-dimensional voxel-based objects are inherently discrete and do not maintain any notion of a continuous surface or normal values, which are crucial for the simulation of light behavior. Thus in volume rendering, the normal vector of the displayed surfaces must be estimated prior to rendering. Unlike existing normal estimation methods, the context sensitive approach proposed here considers object and slope discontinuities. It employs segmentation and segment-bounded operators in order to achieve high fidelity normal estimation for rendering volumetric objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bergman, L., Fuchs, H., Grant, E., and Spach, S., “Image Rendering by Adaptive Refinement”, Computer Graphics, 20, 4, 29–37, (August 1986).

    Article  Google Scholar 

  • Bright, S. and Laflin, S., “Shading of Solid Voxel Models”, Computer Graphics Forum, 5, 2, 131–138, (June 1986).

    Article  Google Scholar 

  • Bryant, J. and Krumvieda, C., “Display of Discrete 3D Binary Objects: I-Shading”, Computers & Graphics, 13, 4, 441–444, (1989).

    Article  Google Scholar 

  • Chen, L., Herman, G. T., Reynolds, R. A., and Udupa, J. K., “Surface Shading in the Cuberille Environment”, IEEE Computer Graphics and Applications, 5, 12, 33–43, (December 1985).

    Article  MATH  Google Scholar 

  • Cohen, D. and Kaufman, A., “Scan-Conversion Algorithms for Linear and Quadratic Objects”, in Volume Visualization, A. Kaufman, (ed.), IEEE Computer Society Press, Los Alamitos, CA,, 280–301, 1990.

    Google Scholar 

  • Cohen, D., Kaufman, A., Bakalash, R., and Bergman, S., “Real-Time Discrete Shading”, The Visual Computer, 6, 1, 16–27, (February 1990).

    Article  Google Scholar 

  • Goldwasser, S. M., “Rapid Techniques for the Display and Manipulation of 3-D Biomedical Data”, Proceedings NCGA’86 Conference, II, 115–149, (May 1986).

    Google Scholar 

  • Goldwasser, S. M., Reynolds, R. A., Talton, D. A., and Walsh, E. S., “High Performance Graphics Processors for Medical Imaging Applications”, in Parallel Processing for Computer Vision and Display, P. M. Dew, R. A. Earnshaw, and T. R. Heywood, (eds.), Addison Wesley, Reading, MA,, 461–470, 1989.

    Google Scholar 

  • Gordon, D. and Reynolds, R. A., “Image Space Shading of 3-Dimensional Objects”, Computer Graphics and Image Processing, 29, 3, 361–376, (March 1985).

    Article  Google Scholar 

  • Grimson, W. E. L. and Pavlidis, T., “Discontinuity Detection for Visual Surface Reconstruction”, Computer Visionf Graphics, and Image Processing, 30, 316–330, (1985).

    Article  Google Scholar 

  • Hoehne, K. H. and Bernstein, R., “Shading 3D-Images from CT Using Gray-Level Gradients”, IEEE Transactions on Medical Imaging, MI-5, 1, 45–47, (March 1986).

    Google Scholar 

  • Hoehne, K. H., Bomans, M., Pommert, A., Riemer, M., Schiers, C., Tiede, U., and Wiebecke, G., “3D-Visualization of Tomographic Volume Data Using the Generalized Voxel Model”, The Visual Computer, 6, 1, 28–37, (February 1990).

    Article  Google Scholar 

  • Horn, B. K. P., “Hill Shading and the Reflection Map”, Geo-Processing, 2, 65–146, (1982).

    Google Scholar 

  • Kaufman, A. and Shimony, E., “3D Scan-Conversion Algorithms for Voxel-Based Graphics”, Proceedings of the 1986 Workshop on Interactive SD Graphics, Chapel Hill, NC, 45–75, October 1986.

    Google Scholar 

  • Kaufman, A., “Efficient Algorithms for 3D Scan-Conversion of Parametric Curves, Surfaces, and Volumes”, Computer Graphics, 21, 4, 171–179, (July 1987).

    Article  MathSciNet  Google Scholar 

  • Kaufman, A., “Efficient Algorithms for 3D Scan-Converting Polygons”, Computers & Graphics, 12, 2, 213–219, (1988).

    Article  Google Scholar 

  • Magnusson, M., Lenz, R., and Danielsson, P. E., “Evaluation of Methods for Shaded Display of CT Volumes”, Proceedings 9th International Conference on Pattern Recognition, II, 1287–1294, (November 1988).

    Article  Google Scholar 

  • Pommert, A., Tiede, U., Wiebecke, G., and Hoehne, K. H., “Surface Shading in Tomographic Volume Visualization: A Comparative Study”, Proceedings of the First Conference on Visualization in Biomedical Computing, Atlanta, GA, 19–26, May 1990.

    Google Scholar 

  • Potmesil, M. and Chakravarty, I., “Synthetic Image Generation with a Lens and Aperture Camera Model”, ACM Transactions on Graphics, 1, 85–108, (1982).

    Article  Google Scholar 

  • Saito, T. and Takahashi, T., “Comprehensive Rendering of 3D Shapes”, Compuer Graphics, 24, 4, 197–206, (August 1990).

    Article  Google Scholar 

  • Schlusselberg, D. S., Smith, K., and Woodward, D. J., “Three-Dimensional Display of Medical Image Volumes”, Proceedings of NCGA’86 Conference, III, 114–123, (May 1986).

    Google Scholar 

  • Tam, Y. W. and Davis, W. A., “Display of 3D Medical Images”, Proceedings of Graphics Interface’88, Edmonton, Alberta, 78–86, June 1988.

    Google Scholar 

  • Tiede, U., Hoehne, K. H., Bomans, M., Pommert, A., Riemer, M., and Wiebecke, G., “Investigation of Medical 3D-Rendering Algorithms”, IEEE Computer Graphics & Applications, 10, 3, 41–53, (March 1990).

    Article  Google Scholar 

  • Torrance, K. E. and Sparrow, E. M., “Theory for Off-Specular Reflection from Roughened Surfaces”, Journal of the Optical Society of America, 57, 1105–1114, (1967).

    Article  Google Scholar 

  • Udupa, J. K. and Hung, H. M., “Surface Versus Volume Rendering: A Comparative Assessment”, Proceedings of the First Conference on Visualization in Biomedical Computing, Atlanta, GA, 83–91, May 1990.

    Google Scholar 

  • Warn, D. R., “Lighting Controls for Synthetic Images”, Computer Graphics, 17, 13–21, (1983).

    Article  Google Scholar 

  • Webber, R. E., “Ray Tracing Voxel Based Data via Biquadratic Local Surface Interpolation”, The Visual Computer, 6, 1, 8–15, (February 1990).

    Article  MathSciNet  Google Scholar 

  • Whitted, T., “An Improved Illumination Model for Shaded Display”, Communications of the ACM 23, 6, 343–349, (June 1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Tokyo

About this paper

Cite this paper

Yagel, R., Cohen, D., Kaufman, A. (1991). Context Sensitive Normal Estimation for Volume Imaging. In: Patrikalakis, N.M. (eds) Scientific Visualization of Physical Phenomena. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68159-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68159-5_12

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68161-8

  • Online ISBN: 978-4-431-68159-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics