Skip to main content

Subependymal CSF Absorption in Hydrocephalic Edema — Ultrastructural Localization of Horseradish Peroxidase and Brain Tissue Damage

  • Conference paper
Hydrocephalus

Summary

The absorption of cerebrospinal fluid (CSF) in hydrocephalic edema was studied in kaolin-induced experimental hydrocephalus in 30 rats by observing the ultrastructural localization of horseradish peroxidase (HRP) as a tracer in relation to neuronal and glial cell brain tissue damage. In the acute stage of hydrocephalus HRP reactive products were diffusely observed in various parts of the deeper brain than in the chronic stage; its reaction products were distributed diffusely in the extracellular spaces and blood vessel walls and some of them were observed in the glial cells and neurons through the routed CSF transport area in both the acute and chronic stage.

In the chronic stage of hydrocephalus, the edema fluid was localized around the ventricle and there were reactive astrocytes with increased glial filaments due to the effects of reactive change caused by intracytoplasmic edema in the glial cells and degenerative changes in some neuronal processes. In blood vessel walls, HRP reactive products were mostly localized in the basement membrane, the increased pinocytotic vesicles of endothelial cells, and in swollen astrocytes in contact with the blood vessels in the subependymal layer. According to these findings, it become clear that hydrocephalic edema in the chronic stage is rapidly absorbed in the limited subependymal layer because of facilitation of CSF absorption caused by increased permeability of the reactive cells of the vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bering EA Jr, Sato O (1963) Hydrocephalus: Changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg 20: 1050–1063

    Article  PubMed  Google Scholar 

  • Bowsher D (1957) Pathway of absorption of protein from the cerebrospinal fluid: An autoradiographic study in the cat. Anat Rec 128: 23–39

    Article  PubMed  CAS  Google Scholar 

  • Brightman MW (1965a) The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. I. Ependymal distribution. J Cell Biol 26: 99–122

    Article  PubMed  CAS  Google Scholar 

  • Brightman MW (1965b) The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. II. Parenchymal distribution. Am J Anat 117: 193–2201

    CAS  Google Scholar 

  • Brightman MW, Rees TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40: 648–677

    Article  PubMed  CAS  Google Scholar 

  • Bundgaard M (1982) Ultrastructure of frog cerebral and pial microvessels and their impermeability to lanthanum ions. Brain Res 241: 57–65

    Article  PubMed  CAS  Google Scholar 

  • Clark RG, Milhorat TH (1970) Experimental hydrocephalus. Part 3. Light microscopic findings in acute and subacute obstructive hydrocephalus in the monkey. J Neurosurg 32: 400–413

    Article  PubMed  CAS  Google Scholar 

  • Fishman RA (1975) Brain edema. N Engl J Med 293: 706–711

    Article  PubMed  CAS  Google Scholar 

  • Gopinath G, Bhatia R, Gopinath PG (1979) Ultrastructural observations in experimental hydrocephalus in rabbits. J Neurol Sci 43: 333–344

    Article  PubMed  CAS  Google Scholar 

  • Lux WE Jr, Hochwald GM, Sahar A, Ransohoff J (1970) Periventricular water content: Effect of pressure in experimental chronic hydrocephalus. Arch Neurol23: 475

    Article  PubMed  CAS  Google Scholar 

  • Hiratsuka H, Tabata H, Tsuruoka S, Aoyagi M, Okada K, Inaba Y (1982) Evaluation of periventricular hypodensity in experimental hydrocephalus by metrizamide CT ventriculography. J Neurosurg 56: 235–340

    Article  PubMed  CAS  Google Scholar 

  • Hochwald GM, Sahar A, Sadik R, Ransohoff J (1969) Cerebrospinal fluid production and histological observations in animals with experimental obstructive hydrocephalus. Exp Neurol 25: 190–199

    Article  PubMed  CAS  Google Scholar 

  • Hopkins LN, Bakay L, Kinkel WR, Grand W (1977) Demonstration of transventricular CSF absorption by computerized tomography. Acta Neurochir (Wien) 39: 151–157

    Article  CAS  Google Scholar 

  • Milhorat TH, Clark RG, Hammock MK, McGrath PP (1970) Structural, ultrastructural, and permeability changes in the ependymal and surrounding brain favoring equilibration in progressive hydrocephalus. Arch Neurol 22: 397–407

    Article  PubMed  CAS  Google Scholar 

  • Miyagami M, Nakamura S, Murakami T, Koga N, Moriyasyu (1976) Electron microscopic study of ventricular wall and choroid plexus in experimentally induced hydrocephalic dogs. Neurol Med Chir (Tokyo) 16: 15–21

    Article  CAS  Google Scholar 

  • Mori K, Handa H, Murata T, Nakano Y (1980) Periventricular lucency in computed tomography of hydrocephalus and cerebral atrophy. J Comput Assist Tomogr4: 204–209

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa Y, Cervós-Navarro J, Artigas J (1985) Tracer study on a paracellular route in experimental hydrocephalus. Acta Neuropath (Berl) 65: 247–254

    Article  CAS  Google Scholar 

  • Ogata J, Hochwald GM, Clavioto H, Ransohoff J (1972) Distribution of intraventricular horseradish peroxidase in normal and hydrocephalic cats. J Neuropathol Exp Neurol 31: 154–163

    Google Scholar 

  • Pappennheimer JR, Heisey SR, Jordan EF, Downer JdeC (1962) Perfusion of the cerebral ventricular system in unanesthetized goats. Am J Physiol 203: 763–774

    Google Scholar 

  • Rubin RC, Hochwald GM, Tiell M, Mizutani H, Ghatak N (1976) I. Histological and ultrastructural changes in the pre-shunted cortical mantle. Surg Neurol5: 109–114

    PubMed  CAS  Google Scholar 

  • Sahar A, Hochwald GM, Sadik AR, Ransohoff J (1969) Cerebrospinal fluid absorption in animals with experimental obstructive hydrocephalus. Arch Neurol 21: 638

    Article  PubMed  CAS  Google Scholar 

  • Sahar A, Hochwald GM, Ransohoff J (1971) Cerebrospinal fluid turnover in experimental hydrocephalic dogs. Neurology (NY) 21: 218

    CAS  Google Scholar 

  • Simpson I, Rose B, Loewenstein WR (1977) Size limit of molecules permeating the junctional membrane channels. Science 195: 294–296

    Article  PubMed  CAS  Google Scholar 

  • Takei F, Shapiro K, Hirano A, Kohn I (1987) Influence of the rate of ventricular enlargement on ultrastructural morphology of the white matter in experimental hydrocephalus. Neurosurgery 21: 645–650

    Article  PubMed  CAS  Google Scholar 

  • Torvik A, Stenwing AE (1977) Pathology of the experimental obstructive hydrocephalus — Electron microscopic observation. Acta Neuropathol (Berl)38: 21–26

    Article  CAS  Google Scholar 

  • Torvik AR, Bhatia R, Nyberg-Hansen (1976) The pathology of experimental obstructive hydrocephalus. Neuropathol appl Neurobiol 2: 42–52

    Google Scholar 

  • Weiler RO, Wisniewski H (1969) Histological and ultrastructural change with experimental hydrocephalus in adult rabbits. Brain 92: 819–823

    Article  Google Scholar 

  • Weiler RO, Wisniewski H, Shulman K, Terry RD (1971) Experimental hydrocephalus in young dogs. J Neuropathol Exp Neurol 30: 613–626

    Article  Google Scholar 

  • Wislocki GB, Putnam TJ (1921) Absorption from the ventricles in experimentally produced internal hydrocephalus. Am J Anat 29: 313–326

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Tokyo

About this paper

Cite this paper

Miyagami, M., Shibuya, T., Tsubokawa, T. (1991). Subependymal CSF Absorption in Hydrocephalic Edema — Ultrastructural Localization of Horseradish Peroxidase and Brain Tissue Damage. In: Matsumoto, S., Tamaki, N. (eds) Hydrocephalus. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68156-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68156-4_18

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68158-8

  • Online ISBN: 978-4-431-68156-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics