Skip to main content

Effects of Ventricular Enlargement of Experimental Hydrocephalus on the Regional Cerebral Blood Flow, Somatosensory Evoked Potentials, and Biomechanical Factors

  • Conference paper
Hydrocephalus

Summary

This study was designed to determine the regional cerebral blood flow (rCBF), somatosensory evoked potentials (SEPs), pressure volume index (PVI), and resistance to absorption of cerebrospinal fluid (Ro) in different stages of kaolin-induced hydrocephalus. The experimental animals (cats) were divided into 2 groups; a normal control, and a kaolin-induced hydrocephalic group.

The kaolin-induced hydrocephalic group was divided into 5 subgroups of 10 cats each. These subgroups consisted of cats at 1, 2, 4, 6, and 8 weeks after intracisternal injection of kaolin. Significant decreases in rCBF were revealed both in the frontal cortex and in the periventricular area of kaolin-induced hydrocephalic cats. A reduction of rCBF to 24.7% of control flow (20.4 ± 2.8 ml per 100g per min) was detected in the right periventricular area at 2 weeks after kaolin injection. Changes of amplitude and latency in SEPs were more prominent 4 weeks after kaolin injection. The PVI increased significantly from 0.77 ± 0.02 ml to 1.60 ± 0.16 ml at 4 weeks after kaolin injection. Ro decreased significantly from 90.6 ± 1.3 mmHg per ml per min to 36.8 ± 4.3 mmHg per ml per min at 4 weeks after kaolin injection. It is assumed that some microcirculatory impairment in the brain parenchyma plays an important role which facilitates ventricular expansion with changes of the biomechanical properties of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asada M, Tamaki N, Kanazawa Y, Matsumoto S, Matsuo M, Kimura S, Fujii S, Kanada Y (1978) Computer analysis of periventricular lucency on the CT scan. Neuroradiology 16: 207–211

    Article  PubMed  CAS  Google Scholar 

  • Bering EA Jr, Sato O (1963) Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg 20: 1050–1063

    Article  PubMed  Google Scholar 

  • Drapkin AJ, Sahar A (1978) Experimental hydrocephalus: cerebrospinal fluid dynamics and ventricular distensibility during early stages. Childs Brain 4: 278–288

    PubMed  CAS  Google Scholar 

  • Fried A, Shapiro K, Takei F, Kohn I (1987) A laboratory model of shunt-dependent hydrocephalus: development and biomechanical characterization. J Neurosurg 66: 734–740

    Article  PubMed  CAS  Google Scholar 

  • Greitz T (1969) Effect of brain distension on cerebral circulation. Lancet I: 863–865

    Article  Google Scholar 

  • Guinane JE (1974) Cerebrospinal fluid resistance and compliance in subacutely hydrocephalic cats. Neurology 24: 138–142

    PubMed  CAS  Google Scholar 

  • Hochwald GM, Lux WB Jr, Sahar A (1972a) Experimental hydrocephalus: Changes in cerebrospinal fluid dynamics as a function of time. Arch Neurol 26: 120–129

    Article  PubMed  CAS  Google Scholar 

  • Hochwald GM, Epstein F, Malhan C (1972b) The role of the skull and dura in experimental feline hydrocephalus. Dev Med Child Neurol 14 (Suppl 27): 65–69

    Google Scholar 

  • Hochwald GM, Epstein F, Malhan C (1973) The relationship of compensated to decompensated hydrocephalus in the cat. J Neurosurg 39: 694–697

    Article  PubMed  CAS  Google Scholar 

  • Hochwald GM, Boal RD, Marlin AE, Kumar AJ (1975) Changes in regional blood flow and water content of brain and spinal cord in acute and chronic experimental hydrocephalus. Dev Med Child Neurol [Suppl] 17: 42–50

    Article  Google Scholar 

  • Löfgren J, von Essen C, Zwetnow NN (1973) The pressure-volume curve of the cerebrospinal fluid space in dogs. Acta Neurol Scand 49: 557–574

    Article  PubMed  Google Scholar 

  • Marmarou A, Shulman K, MaMorgese J (1975) Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg 43: 523–535

    Article  PubMed  CAS  Google Scholar 

  • Matthew NT, Meyer JS, Hartmann A, Ott EO (1975) Abnormal cerebrospinal fluidblood flow dynamics. Implications in diagnosis, treatment, and prognosis in normal pressure hydrocephalus. Arch Neurol 32: 644–657

    Google Scholar 

  • McLone DG, Bondareff W, Raimondi AJ (1971) Brain edema in the hydrocephalic hy-3 mouse: Submicroscopic morphology. J Neuropathol Exp Neurol 30: 627–637

    Article  PubMed  CAS  Google Scholar 

  • Milhorat TM, Clark RG, Hammock MK, McGrath PP (1971) Structual, ultrastructural, and permeability changes in the ependyma and surrounding brain favoring equilibration in progressive hydrocephalus. Arch Neurol 22: 397–407

    Article  Google Scholar 

  • Mori K, Handa H, Murata T, Nakano Y (1980) Periventricular lucency in computed tomography of hydrocephalus and cerebral atrophy. J Comp Assist Tomogr 4: 204–210

    Article  CAS  Google Scholar 

  • Murata T, Yamagata S, Mori K, Handa H, Nakano Y (1980) Computed tomography in experimental canine hydrocephalus. Part 4: periventricular lucency (PVI) and regional cerebral blood flow in the chronic stage of hydrocephalus. Brain Nerve 32: 219–227

    PubMed  CAS  Google Scholar 

  • Naidich TP, Epstein F, Lin JP, Kricheff II, Hochwald GM (1976) Evaluation of pediatric hydrocephalus by computed tomography. Radiology 119: 337–345

    PubMed  CAS  Google Scholar 

  • Nakamura S, Camins MB, Hochwald GM (1983) Pressure absorption responses to the infusion of fluid into the spinal cord central canal of kaolin-hydrocephalic cats. J Neurosurg 58: 198–203

    Article  PubMed  CAS  Google Scholar 

  • Pasztor E, Symon L, Dorsch NWC (1973) The hydrogen clearance method in assessment of blood flow in cortex, white matter and deep nucleus of baboons. Stroke 4: 556–557

    Article  PubMed  CAS  Google Scholar 

  • Rubin RC, Hochwald GM, Tiell M (1976) Hydrocephalus: I. Histological and ultrastructural changes in the preshunted cortical mantle. Surg Neurol 5: 109–114

    CAS  Google Scholar 

  • Sato O, Ohya M, Nojiri K, Tsugane R (1984) Microcirculatory changes in experimental hydrocephalus: morphological and physiological studies. In: Shapiro K, Marmarou A, Portnoy HP (eds) Hydrocephalus. Raven, New York, pp 215–230

    Google Scholar 

  • Shapiro K, Fried A, Marmarou A (1985a) Biomechanical and hydrodynamic characterization of the hydrocephalic infant. J Neurosurg 63: 69–75

    Article  PubMed  CAS  Google Scholar 

  • Shapiro K, Fried A, Takei F, Kohn I (1985b) Effect of the skull and dura on neural axis pressure-volume relationships and CSF hydrodynamics. J Neurosurg63: 76–81

    Article  PubMed  CAS  Google Scholar 

  • Shulman K, Marmarou A (1971) Pressure-volume considerations in infantile hydrocephalus. Dev Med Child Neurol 13(Suppl 25): 90–95

    Google Scholar 

  • Takei F, Shapiro K, Kohn I (1987) Influence of the rate of ventricular enlargement on the white matter water content in progressive feline hydrocephalus. J Neurosurg 66: 577–583

    Article  PubMed  CAS  Google Scholar 

  • Torvik A, Murthy VS (1977) The spinal cord central canal in kaolin-induced hydrocephalus. J Neurosurg 47: 397–402

    Article  PubMed  CAS  Google Scholar 

  • Weiler RO, Williams BN (1975) Cerebral biopsy and assessment of brain damage in hydrocephalus. Arch Dis Child 50: 763–768

    Article  Google Scholar 

  • Weiler RO, Wisniewski H (1969) Histological and ultrastructural changes with experimental hydrocephalus in adult rabbits. Brain 92: 819–828

    Article  Google Scholar 

  • Yakovlev PI (1947) Paraplegias of hydrocephalies. Am J Ment Defic 51: 561–576

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Tokyo

About this paper

Cite this paper

Kang, J.K. et al. (1991). Effects of Ventricular Enlargement of Experimental Hydrocephalus on the Regional Cerebral Blood Flow, Somatosensory Evoked Potentials, and Biomechanical Factors. In: Matsumoto, S., Tamaki, N. (eds) Hydrocephalus. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68156-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68156-4_11

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68158-8

  • Online ISBN: 978-4-431-68156-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics