Cell Kinetics of Brain Tumors and Its Clinical Relevance

  • Takao Hoshino


Brain tumors are unique in their cell kinetics. They grow within the cranium, a limited space in which the proliferative capacity is minimal. Most patients with brain tumors die from cerebellar or cerebral herniation caused by increased intracranial pressure when the weight of the tumor reaches from 250 to 300 g. Thus, any patient whose brain contains a tumor of that size may die, whether it is histopathologically benign or malignant. Thus, the prognosis for patients with brain tumors depends largely upon the size of the lesion and rate of tumor growth.


Brain Tumor Proliferate Cell Nuclear Antigen Label Index Proliferative Potential Human Brain Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gratzner HG (1982) Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science 218: 474–476PubMedCrossRefGoogle Scholar
  2. 2.
    Goz B (1978) The effects of incorporation of 5-halogenated deoxyuridines into the DNA of eukaryotic cells. Pharmacol Rev 29: 249–272Google Scholar
  3. 3.
    Dolbeare F, Gratzner H, Pallavicini MG, Gray JW (1983) Flow cytometric measurement of total DNA content and incorporated bromodeoxyuridine. Proc Natl Acad Sei USA 80: 5573–5577CrossRefGoogle Scholar
  4. 4.
    Hoshino, T, Nagashima T, Murovic J, Levin EM, Levin VA, Rupp SM (1985) Cell kinetic studies of in situ human brain tumors with bromodeoxyuridine. Cytometry 6: 627–732PubMedCrossRefGoogle Scholar
  5. 5.
    Nagashima T, DeArmond SJ, Murovic J, Hoshino T (1985) Immunocytochemical demonstration of S-phase cells by anti-bromodeoxyuridine monoclonal antibody in human brain tumor tissues. Acta Neuropathol (Berl) 67: 155–159CrossRefGoogle Scholar
  6. 6.
    Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53: 457–481CrossRefGoogle Scholar
  7. 7.
    Hoshino T (1991) Proliferative potential of astrocytomas and glioblastomas. In: Paoletti P, Takakura K, Walker MD, Butti G, Pezzotta S (eds)., Neuro-oncology, Kluwer Academic, Dordrecht, p 33–39Google Scholar
  8. 8.
    Cox DR (1972) Regression models and life tables. J R Statist Soc 34 [B]: 187–220Google Scholar
  9. 9.
    Hoshino T, Kobayashi S, Townsend JJ, Wilson CB (1985) A cell kinetic study on medulloblastomas. Cancer 55: 1711–1713PubMedCrossRefGoogle Scholar
  10. 10.
    Bloom HJG, Wallace ENK, Henk JM (1969) The treatment and prognosis of medulloblastoma in children. AJR 105: 43–62Google Scholar
  11. 11.
    Bongartz EB, Bamberg M, Nau HE, Schmitt G, Bagindin E (1979) Optimal therapy in medulloblastoma. Acta Neurochir (Wien) 50: 117–125CrossRefGoogle Scholar
  12. 12.
    Chin HW, Maruyama Y (1983) Early response and long-term results in the radiotherapy of childhood medulloblastoma. J Neurooncol 1: 53–59PubMedCrossRefGoogle Scholar
  13. 13.
    Cumberlin R, Luk KH, Wara WM, Sheline GE, Wilson CB (1979) Medulloblastoma. Treatment results and effect on normal tissues. Cancer 43: 1014–1020PubMedCrossRefGoogle Scholar
  14. 14.
    Hirsh JF, Renier O, Czerniehow P, Benveniste L, Pierr-Kahn A (1979) Medullob-lastoma in childhood. Survival and functional results. Acta Neurochir (Wien) 48:1– 15Google Scholar
  15. 15.
    Park TS, Hoffman HJ, Hendrick EB, Humphreys RP, Becker LE (1983) Medullob-lastoma: Clinical presentation and management. J Neurosurg 58: 543–552PubMedCrossRefGoogle Scholar
  16. 16.
    Shibui S, Hoshino T, Vanderlaan M, Gray JW (1989) Double labeling with iodo- and bromodeoxyuridine for cell kinetic studies. J Histochem Cytochem 37:1007– 1011PubMedCrossRefGoogle Scholar
  17. 17.
    Asai A, Shibui S, Barker M, Vanderlaan M, Gray JW, Hoshino T (1990) Cell kinetics of the 9L rat brain tumor determined by double labeling with iodo- and bromodeoxyuridine. J Neurosurg 73: 254–258PubMedCrossRefGoogle Scholar
  18. 18.
    Tabuchi K, Honda C, Nakane P (1987) Demonstration of proliferating cell nuclear antigen ( PCNA/Cyclin) in glioma cells. Neurol Med Chir (Tokyo) 27: 1–5CrossRefGoogle Scholar
  19. 19.
    Shibui S, Hoshino T, Iwasaki K, Nomura K, Jastreboff MM (1989) Cell cycle phase dependent emergence of thymidylate synthase studied by monoclonal antibody (M-TS-4). cell Tissue Kinet 22: 259–268PubMedGoogle Scholar
  20. 20.
    Mushika M, Miwa T, Suzuoki Y, Hayashi K, Masaki S, Kaneda T (1988) Detection of proliferative cells in dysplasia, carcinoma in situ, and invasive carcinoma of the uterine cervix by monoclonal antibody against DNA polymerase a. Cancer 61: 1182–1186PubMedCrossRefGoogle Scholar
  21. 21.
    Gerdes J, Schwab U, Lemke H, Stein H (1983) Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer 31: 13–20PubMedCrossRefGoogle Scholar
  22. 21.
    Nishizaki T, Orita T, Furutani Y, Ikeyama Y, Aoki H, Sasaki K (1989) Flow- cytometric DNA analysis and immunohistochemical measurement of Ki-67 and BUdR labeling indices in human brain tumors. J Neurosurg 70: 379–384PubMedCrossRefGoogle Scholar
  23. 22.
    Kajiwara K, Nishizaki T, Orita T, Nakayama H, Aoki H, Ito H (1990) Silver colloid staining technique for analysis of glioma malignancy. J Neurosurg 73: 113–117PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Takao Hoshino
    • 1
  1. 1.Department of NeurosurgeryKyorin University School of MedicineMitaka, Tokyo, 181Japan

Personalised recommendations