Chromosomes and Clinical Features in 6 Cases of Gliomas

  • Takashi Houri
  • Norihiro Ibayashi
  • Masahito Fujimoto
  • Satoshi Ueda
  • Johji Inazawa
  • Tatsuo Abe


Several characteristic and specific chromosomal changes have been observed in human solid tumors [1]. It has been assumed that these aberrations are involved in the processes of initiation and progression of the tumor. In glioblastoma, numerical and structural chromosomal abnormalities have been reported, such as gains of chromosome 7, losses of chromosome 10, structural abnormalities of chromosome 9, and double minute chromosomes (dmin) [2]. Cytogenetic analysis of the initial and recurrent tumor tissues of malignant gliomas has provided information regarding the specific and multistep chromosomal changes during initiation and progression of the lesions [3].


Epidermal Growth Factor Receptor Malignant Glioma Recurrent State Malignant Human Glioma Human Cytogenetic Nomenclature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sandberg A A, Turc-Carel C, Gemmill RM (1988) Chromosomes in solid tumor and beyond. Cancer Res 48: 1049–1059PubMedGoogle Scholar
  2. 2.
    Bigner SH, Mark J, Burger PC, Mahaley MS, Bullard DE Jr, Muhlbaier LH, Bigner DD (1988) Specific chromosomal abnormalities in malignant human gliomas. Cancer Res 88: 405–411Google Scholar
  3. 3.
    Bigner SH, Wong AJ, Mark J, Muhlbaier LH, Kinzler KW, Vogelstein B, Bigner DD (1987) Relationship between gene amplification and chromosomal deviations in malignant human gliomas. Cancer Genet Cytogenet 29: 165–170PubMedCrossRefGoogle Scholar
  4. 4.
    Verma RS, Babu A (1989) Human chromosome: Manual of basic techniques. Pergamon, New York, pp 4–113Google Scholar
  5. 5.
    Harnden DG, Klinger HP (eds) (1985) ISCN. An international system for human cytogenetic nomenclature. S. Karger, Base 1Google Scholar
  6. 6.
    Jenkins RB, Kimmel DW, Moertel CA, Schultz CG, Scheithauer BW, Kelly PJ, Dewald GW (1989) A cytogenetic study of 53 human gliomas. Cancer Genet Cytogenet 39: 253–279PubMedCrossRefGoogle Scholar
  7. 7.
    Cavenee WK, Scrable HJ, James CD (1989) Molecular genetics of human cancer predisposition and progression. In: Cavenee WK, Hastie ND, Stanbridge EJ (eds) Current communications in molecular biology: Recessive oncogenes and tumor suppression. Cold Spring Harbor, New York, pp 67–72Google Scholar
  8. 8.
    James CD, Carlbom E, Dumanski JP, Hansen M, Nordenskjold M, Collins VP, Cavenee WK (1988) Clonal genomic alterations in glioma malignancy stages. Cancer Res 48: 5546–5551PubMedGoogle Scholar
  9. 9.
    Fujimoto M, Fults DW, Thomas GA, Nakamura Y, Heilbrun MP, White R, Story JL, Naylor SL, Kagan-Hallet KS, Sheridan PJ (1989) Loss of heterozygosity on chromosome 10 in human glioblastoma multiforme. Genomics 4: 210–214PubMedCrossRefGoogle Scholar
  10. 10.
    El-Azouzi M, Chung RY, Farmer GE, Martuza RL, Black PM, Rouleau GA, Hettlich C, Hedley-Whyte ET, Zervas NT, Panagopoulos K, Nakamura Y, Gusella JF, Seizinger BR (1989) Loss of distinct regions on the short arm of chromosome 17 associated with tumorigenesis of human astrocytomas. Proc Natl Acad Sei USA 86: 7186–7190CrossRefGoogle Scholar
  11. 11.
    Fults D, Pedone CA, Thomas GA, White R (1990) Allelotype of human malignant astrocytoma. Cancer Res 50: 5784–5789PubMedGoogle Scholar
  12. 12.
    Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, Bigner SH, Davidson N, Baylin S, Devilee P, Glover T, Collins FS, Weston A, Modali R, Harris CC, Vogelstein B (1989) Mutations in the p53 gene occur in diverse human tumor types. Nature 342: 705–708PubMedCrossRefGoogle Scholar
  13. 13.
    Schimke RT (1984) Gene amplification in cultured animal cells. Cell 37: 705–713PubMedCrossRefGoogle Scholar
  14. 14.
    Lin CC, Alitalo K, Schwab M, George D, Varmus HE, Biship JM (1985) Evolution of karyotypic abnormalities and c-myc oncogene amplification in human colonic carcinoma cell lines. Chromosoma 92: 11–15PubMedCrossRefGoogle Scholar
  15. 15.
    Nunberg JH, Kaufman RJ, Schimke RT, Urlaub G, Chasin LA (1978) Amplified dihydrofolate reductase genes are localized to a homogeneously staining of a single chromosomes in methotrexate-resistant Chinese hamster ovary cell line. Proc Natl Acad Sei USA 75: 5553–5556CrossRefGoogle Scholar
  16. 16.
    Libermann TA, Nusbaum HR, Rozon N, Kris R, Lax I, Soreq H, Whittle N, Waterfield MD, Ullrich A, Schiessinger J (1985) Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial orgin. Nature 313: 144–147PubMedCrossRefGoogle Scholar
  17. 17.
    Kinzler KW, Bigner SH, Bigner DD, Trent JM, Low ML, O’Brien SJ, Wong AJ, Vogelstein B (1987) Identification of an amplified, highly expressed gene in a human glioma. Science 236: 70–73PubMedCrossRefGoogle Scholar
  18. 18.
    Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B (1987) Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sei USA 84: 6899–6903CrossRefGoogle Scholar
  19. 19.
    Fujimoto M, Sheridan PJ, Sharp ZD, Weaker FJ, Kagan-Hallet KS, Story JL (1989) Proto-oncogene analyses in brain tumors. J Neurosurg 70: 910–915PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Takashi Houri
    • 1
  • Norihiro Ibayashi
    • 1
  • Masahito Fujimoto
    • 1
  • Satoshi Ueda
    • 1
  • Johji Inazawa
    • 2
  • Tatsuo Abe
    • 2
  1. 1.Department of NeurosurgeryKyoto Prefectural University of MedicineKyoto, 602Japan
  2. 2.Department of HygieneKyoto Prefectural University of MedicineKyoto, 602Japan

Personalised recommendations