Metabolic Changes in a Glioma Model Following Chemotherapy

  • Kiyotaka Sato
  • Motonobu Kameyama
  • Ryuichi Katakura
  • Takamasa Kayama
  • Takashi Yoshimoto
  • Kiichi Ishiwata


Positron emission tomography (PET) has been widely used in the diagnosis of brain tumors and in the evaluation of therapy. 18F-fiuorodeoxyglucose (18FDG) and 11C-methionine have been used to diagnose the malignancy of tumors and to evaluate therapeutic effectiveness [1–3]. Moreover, tracers indicating the metabolism of nucleic acid have been investigated and 18F-fluoro-2′-deoxyuridine (18FdUrd) was developed for this use [4–8]. To shed light on the metabolic changes in gliomas following therapy, we have used a glioma model to study correlational changes among 18FdUrd, 14C-thymidine, 14C-methionine, and 3H-deoxyglucose uptake after chemotherapy as a means for interpreting clinical PET results, together with the changes in the bromodeoxyuridine labeling index (BUdR LI).


Positron Emission Tomography Human Brain Tumor Glioma Model Nucleic Acid Metabolism Cerebral Glioma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Derlon JM, Bourdet C, Bustany P, Chatel M, Theron J, Darcel F, Syrota A (1989) [11C]L-methionine uptake in gliomas. Neurosurg 25: 720–728CrossRefGoogle Scholar
  2. 2.
    Kameyama M, Shirane R, Itoh J, Sato K, Katakura R, Yoshimoto T, Hatazawa J, Itoh M, Ido T (1990) The accumulation of 11C-methionine and histological grade in cerebral glioma patients studied with PET. Acta Neurochir (Wien) 104: 8–12CrossRefGoogle Scholar
  3. 3.
    Patronas NJ, Brooks RA, DeLaPaz RL, Smith BH, Kornblith PL and DiChiro G (1983) Glycolytic rate (PET) and contrast enhancement ( CT) in human cerebral gliomas. AJNR 4: 533–535PubMedGoogle Scholar
  4. 4.
    Abe Y, Fukuda H, Ishiwata K, Yoshioka S, Yamada K, Endo S, Kubota K, Sato T, Matsuzawa T, Takahashi T, Ido T (1983) Studies on 18F-labeled pyrimidines. Tumor uptakes of 18F-5-fluorouracil, 18F-5-fluorouridine, 18F-5-fluorodeoxy-uridine in animals. Eur J Nucl Med 8: 258–261PubMedCrossRefGoogle Scholar
  5. 5.
    Ishiwata K, Ido T, Kawashima K, Murakami M, Takahashi T(1984) Studies on 18F-labeled pyrimidines: II. Metabolic investigation of 18F-5-fluorouracil, 18F-5- fluoro-2′-deoxy- uridine and 18F-5-fluorouridine in rats. Eur J Nucl Med 9: 185–189PubMedCrossRefGoogle Scholar
  6. 6.
    Ishiwata K, Ido T, Abe Y, Matsuzawa T and Murakami M (1985) Studies on 18F-labeled pyrimidines: III. Biochemical investigation of 18F-labeled pyrimidines and comparison with 3H-deoxythymidine in tumor-bearing rats and mice. Eur J Nucl Med 10: 39–44PubMedCrossRefGoogle Scholar
  7. 7.
    Kameyama M, Tsurumi Y, Itoh J, Sato K, Katakura R, Yoshimoto T, Hatazawa J, Itoh M, Ido T (to be published) Clinical application of 18Fluorodeoxyuridine in glioma patients-PET study of nucleic acid metabolism. J Neurol Neurosurg PsychiatryGoogle Scholar
  8. 8.
    Tsurumi Y, Kameyama M, Ishiwata K, Katakura R, Monma M, Ido T, Suzuki J (1990) 18F-fluoro-2′-deoxyuridine as a tracer of nucleic acid metabolism in brain tumors. J Neurosurg 72: 110–113PubMedCrossRefGoogle Scholar
  9. 9.
    Ishiwata K, Monma M, Iwata R, Ido T (1987) Automated synthesis of 5-[18F]fluoro- 2′-deoxyuridine. Int J Radiat Isot 38: 467–473CrossRefGoogle Scholar
  10. 10.
    Hoshino T, Nagashima T, Murovic J, Levin EM, Levin VA, Rupp SM (1985) Cell kinetic studies of in situ human brain tumors with bromodeoxyuridine. Cytometry 6: 627–632PubMedCrossRefGoogle Scholar
  11. 11.
    Ikeda H, Yoshimoto T (to be published) Developmental changes in proliferative activity of cells of the murine Rathke’s pouch. Cell Tissue ResGoogle Scholar
  12. 12.
    Nagashima T, De Rrmond SJ, Murovic J, Hoshino T (1985) Immunocytochemical demonstration of S-phase cells by anti-bromodeoxyuridine monoclonal antibody in human brain tumor tissues. Acta Neuropathol (Berl) 67: 155–159CrossRefGoogle Scholar
  13. 13.
    Moore FD, Tobin LH, Aub JC (1943) Studies with radioactive di-azo dyes: III. The distribution of radioactive dyes in tumor-bearing mice. J Clin Invest 22: 161–168PubMedCrossRefGoogle Scholar
  14. 14.
    Shani J, Wolf W (1977) A model for prediction of chemotherapy response to fluorouracil based on the differential distribution of 5-[18F]fluoro- uracil in sensitive versus resistant lymphocytic leukemia in mice. Cancer Res 37: 2306–2308PubMedGoogle Scholar
  15. 15.
    Shani J, Wolf W, Schlesinger T (1978) Distribution of 18F-5-fluorouracil in tumor- bearing mice and rats. Int J Nucl Med Biol 6: 19–28CrossRefGoogle Scholar
  16. 16.
    Visser GWM, Gorree GCM, Braakhuis BJM, Herscheid JDM (1989) An optimized synthesis of 18F-labeled 5-fluorouracil and a re-evaluation of its use as a prognostic agent. Eur J Nucl Med 15: 225–229PubMedCrossRefGoogle Scholar
  17. 17.
    Abrams ND, Knaus EE, Lentle BC and Wiebe LL (1979) Tumor uptake of radiolabeled pyrimidine bases and pyrimidine nucleotides in animal model: II. 6-[3H]-5-fluoro-2′-deoxyuridine. Int J Nucl Med Biol 6: 103–107PubMedCrossRefGoogle Scholar
  18. 18.
    Hoshino T (1973) Cell kinetics of brain tumors. Neurol Med Chir (Tokyo) 6: 453–459Google Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Kiyotaka Sato
    • 1
  • Motonobu Kameyama
    • 1
  • Ryuichi Katakura
    • 1
  • Takamasa Kayama
    • 1
  • Takashi Yoshimoto
    • 1
  • Kiichi Ishiwata
    • 2
  1. 1.Division of Neurosurgery, Institute of Brain DiseasesTohoku University School of MedicineSendai, 980Japan
  2. 2.Division of Radiopharmaceutical ChemistryTohoku UniversitySendai, 980Japan

Personalised recommendations