Advertisement

PET Measurement of Tumor Metabolism in Patients with Gliomas

  • Katsuyoshi Mineura
  • Toshio Sasajima
  • Masayoshi Kowada
  • Fumio Shishido
  • Kazuo Uemura

Abstract

Brain tumors are considered to have well-integrated metabolic systems, because each tumor survives and maintains an adenosine triphosphate (ATP) level and energy charge. Diversity of metabolic patterns was noted in specimens of human brain tumors [1]. Biochemical assay may not always reflect in vivo enzyme activities and the metabolites of resected tumor tissues: it is not pure and is usually contaminated with heterogenous materials such as necroses and stromal tissues.

Keywords

Positron Emission Tomography Positron Emission Tomography Image Positron Emission Tomography Study Arachnoid Cyst Oxygen Extraction Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lowry OH, Berger SJ, Carter JG, Chi MMY, Manchester JK, Knor J, Pusateri ME (1983) Diversity of metabolic patterns in human brain tumors: enzymes of energy metabolism and related metabolites and cofactors. J neurochem 41: 994–1010PubMedCrossRefGoogle Scholar
  2. 2.
    Mineura K, Yasuda T, Kowada T, Shishido T, Ogawa T, Uemura K (1986) Positron emission tomographic evaluation of histological malignancy in gliomas using oxygen- 15 and fluorine-18-fluorodeoxyglucose. Neurol Res 8: 164–168PubMedGoogle Scholar
  3. 3.
    Mineura K, Kowada M, Shishido F (1989) Brain tumor imaging with synthesized 18F-fluorophenylalanine and positron emission tomography. Surg Neurol 31: 468–469PubMedCrossRefGoogle Scholar
  4. 4.
    Mineura K, Sasajima T, Suda Y, Kowada M, Shishido F, Uemura K (1989) Early and accurate detection of primary cerebral glioma with interfibrillary growth using 11C-L-methionine positron emission tomography. J Med Imag 3: 192–196Google Scholar
  5. 5.
    Mineura K, Sasajima T, Suda Y, Kowada M, Shishido F, Uemura K (1990) Amino acids study of cerebral gliomas using positron emission tomography: Analysis of (11C-methyl)-L-methionine uptake index. Neurol Med Chir (Tokyo) 30: 997–1002CrossRefGoogle Scholar
  6. 6.
    Mineura K, Sasajima T, Kowada M, Uesaka Y, Shishido F (1991) Innovative approach in the diagnosis of gliomatosis cerebri using 11C-L-methionine positron emission tomography. J Nucl Med 32: 726–728PubMedGoogle Scholar
  7. 7.
    DiChiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, Patronas NJ, Kufta CV, Kessler RM, Johnston GS, Manning RG, Wolf AP (1982) Glucose utilization of cerebral gliomas measured by [18F]fluorodeoxyglucose and positron emission tomography. Neurology 32: 1323–1329Google Scholar
  8. 8.
    Alavi JB, Alavi A, Chawluk J, Kushner M, Powe J, Hickey W, Reivich M (1988) Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 62: 1074–1078PubMedCrossRefGoogle Scholar
  9. 9.
    Patronas NJ, DiChiro G, Kufta C, Bairamian D, Kornblith PL, Simon R, Larson SM (1985) Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 62: 816–822PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Katsuyoshi Mineura
    • 1
  • Toshio Sasajima
    • 1
  • Masayoshi Kowada
    • 1
  • Fumio Shishido
    • 2
  • Kazuo Uemura
    • 2
  1. 1.Neurosurgical ServiceAkita University HospitalAkita, 010Japan
  2. 2.Department of Radiology and Nuclear MedicineResearch Institute for Brain and Blood Vessels-AkitaAkita, 010Japan

Personalised recommendations