Skip to main content

Superconducting Properties in Layered Cuprate Oxides

  • Conference paper
Advances in Superconductivity III

Abstract

It is probable in layered cuprate oxides such as YBa2Cu3O7 and Bi2Sr2CaCu2O8 that superconductivity is generated in the CuO2 layers and superconductivity in the other layers is induced by the proximity effect. According to the present theoretical study, it was found that unusual properties observed in the experiments of tunneling conductance, optical conductivity, and nuclear magnetic resonance in the oxides are explained on a basis of this model. The single flux line structure and thus the flux line lattice structure in the cuprate oxides are strongly influenced from their layer structure. The anomalous structure of the flux line is important for the flux pinning in the oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Geerk J, Xi X X, Linker G (1988) Z. Phys. B73: 329.

    Article  Google Scholar 

  2. Gurvitch M, Valles Jr. JM, Cucolo AM, Dynes RC, Garno JP, Schneemeyer LF, Waszczak JV (1989) Phys.Rev.Lett. 63: 1008.

    Article  ADS  Google Scholar 

  3. Fournel A, Oujia I, Sorbier I, Noel H, Levet JC, Potel M, Gougeon P (1988) Europhys. Lett. 6: 653.

    Article  ADS  Google Scholar 

  4. Takeuchi I, Tsai JS, Shimakawa Y, Manako T, Kubo Y (1989) Physica C158: 83.

    Article  Google Scholar 

  5. Schlesinger Z, Collins RT, Holtzberg F, Feild C, Blanton SH, Welp U, Crabtree GW, Fang Y, Liu JZ (1990) Phys. Rev. Lett. 64: 801.

    Article  ADS  Google Scholar 

  6. Thomas GA, Orenstein J, Rapkine DH, Capizzi M, Millis AJ, Bhatt RN, Schneemeyer LF, Waszczak JV (1988) Phys. Rev. Lett. 61: 1313.

    Article  ADS  Google Scholar 

  7. Kamaras K, Herr SL, Porter CD, Tache N, Tanner DB, Etemad S, Venkatesan T, Chase E, Inam A, Wu XD, Hegde MS, Dutta B (1990) Phys. Rev. Lett. 64: 84.

    Article  ADS  Google Scholar 

  8. Timusk T, Reedyk M, Hughes R, Bonn DA, Garrett JD, Greedan JE, Stager CV, Tanner DB, Gao F, Herr SL, Kamaras K, Thomas GA, Cooper SL, Orenstein J, Schneemeyer LF, Millis AJ (1989) Physica C162–164: 841.

    Google Scholar 

  9. Warren Jr. WW, Walstedt RE, Brennert GF, Espinosa GP, Remeika JP (1987) Phys.Rev.Lett. 59: 1860.

    Article  ADS  Google Scholar 

  10. Kitaoka Y, Hiramatsu S, Kondo T, Asayama K (1988) J. Phys. Soc. Jpn. 57: 30.

    Article  ADS  Google Scholar 

  11. Imai T, Shimizu T, Yasuoka H, Ueda Y, Kosuge K (1988) J. Phys. Soc. Jpn. 57: 2280.

    Article  ADS  Google Scholar 

  12. P.C. Hammel, M. Takigawa, R.H. Heffner, Z. Fisk, K.C. Ott (1989) Phys.Rev.Lett. 63: 1992.

    Article  ADS  Google Scholar 

  13. Takigawa M, Hammel PC, Heffner RH, Fisk Z, Ott KC, Thompson JD (1989) Physica C162–164: 853.

    Google Scholar 

  14. Barrett SE, Durand DJ, Pennington CH, Slichter CP, Friedmann TA, Rice JP, Ginsberg DM (1990) Phys. Rev. B41: 6283.

    Article  ADS  Google Scholar 

  15. Takahashi S, Tachiki M (1990) Physica C170: 505.

    Article  Google Scholar 

  16. Takahashi T, Matsuyama M, Katayama-Yoshida H, Okabe Y, Hosaya S, Seki K, Fujimoto H, Sato M, Inokuchi H, Nature 334: (1988) 691.

    Article  ADS  Google Scholar 

  17. Campuzano JC, Jennings G, Faiz M, Beaulaigue L, Veal BW, Liu JZ, Paulikas AP, Vandervoort K, Claus H, List RS, Arko AJ,. Bartlett RJ (1990) Phys. Rev. Lett. 64: 2308.

    Article  ADS  Google Scholar 

  18. Tachiki M, Takahashi S, F. Steglich, H. Adrian (1990) Z.Phys. B80: 161.

    Article  Google Scholar 

  19. Lawrence W, Doniach S (1971) In: Kanda E (eds) in Proc. 12th Int. Cof. on Low Temperature Physics. Academic Press of Japan, Kyoto, p. 361

    Google Scholar 

  20. Klemm RA, Luther A, Beasley MR (1975) Phys. Rev. B12: 877.

    Article  ADS  Google Scholar 

  21. Koyama T, Takezawa N, Tachiki M, to be published in Physica C

    Google Scholar 

  22. Tachiki M, Takahashi S (1989) Solid State Commun. 70: 291, ibid. 72: 1083.

    Google Scholar 

  23. B.I. Ivlev, N.B. Kopnin (1990) Phys. Rev. Lett. 64: 1828.

    Article  ADS  Google Scholar 

  24. Chakravatry S, Ivlev BI, Ovchinnikov YN (1990) Phys. Rev. Lett. 64: 3187.

    Article  ADS  Google Scholar 

  25. Feinberg D, Villard C (1990) Phys. Rev: Lett. 65: 919.

    Article  ADS  Google Scholar 

  26. Roos B, Schultz L, Saemann-Ischenko G (1990) Phys. Rev. Lett. 64: 479.

    Article  ADS  Google Scholar 

  27. Raffy H, Labdi S, Laborde O, Monceau P (1990) Physica B165–166: 1423.

    Google Scholar 

  28. Adrian H, private communications.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Tokyo

About this paper

Cite this paper

Tachiki, M., Koyama, T., Takahashi, S. (1991). Superconducting Properties in Layered Cuprate Oxides. In: Kajimura, K., Hayakawa, H. (eds) Advances in Superconductivity III. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68141-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68141-0_7

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68143-4

  • Online ISBN: 978-4-431-68141-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics