Advertisement

Low Temperature In-Situ Growth of YBCO High Tc Superconducting Thin Films Using MOCVD and Plasma-Enhanced MOCVD (PE-MOCVD)

  • J. Zhao
  • Y. Q. Li
  • C. S. Chern
  • W. Huang
  • P. Norris
  • B. Gallois
  • B. Kear
  • P. Lu
  • F. Cosandey
Conference paper

Abstract

YBCO thin films with a critical current density of 2.3 × 106 A/cm2 and 1×106 A/cm2 at 77.7 K and 0 T were prepared, in-situ, by metalorganic chemical vapor deposition (MOCVD) and PE-MOCVD. The films were formed in-situ on LaAlO3 at a substrate temperature of 570–730°C in 2–20 torr partial pressure of N2O. Resistivity and magnetic susceptibility measurements show a sharp superconducting transition (less than 1K wide) at 88–90 K . X-ray diffraction and high resolution electron microscopy measurements indicate that films grew epitaxially with the c-axis perpendicular to the surface of the substrate.

Keywords

Critical Current Density YBCO Film Metalorganic Chemical Vapor Deposition High Oxygen Partial Pressure YBCO Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.D. Berry, D.K. Gaskill, R.T. Holm, E.J. Cukauskas, R. Kaplan, R.L. Henry, Appl. Phys. Lett. 52, 1743 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    H. Yamane, H. Masumoto, T. Hirai, H. Iwasaki, K. Watanabe, N. Kobayashi and Y. Muto, AppL. Phys. Lett. 53, (1988) 1548Google Scholar
  3. 3.
    T.Nakamori, H.Abe, T.Kanamori and S.Shibata, Jpn. J.Appl.Phys.27(1988)L1473Google Scholar
  4. 4.
    H. Yamane, H. Kurosawa, T. Hirai,K. Watanabe, H. Iwasaki, N. Kobayashi and Y. Muto, Supercond. Sci. Technol. 2 (1989) 115–117ADSCrossRefGoogle Scholar
  5. 5.
    T. Tsuruoka, R. Kawasaki, and H. Abe, Jpn. J. Appl. Phys. 28, L607, 1989.CrossRefGoogle Scholar
  6. 6.
    K. Kanehori, Fall MRS Meeting 1989, ISTEC Workshop 1990.Google Scholar
  7. 7.
    R.H. Hammond and R.Bormann, Physica C162–164, 703 (1989).Google Scholar
  8. 8J.
    Zhao, D.W. Noh, C. S. Chern, Y.Q. Li, P. Norris, B. Gallois, and B. Kear, Appl. Phys. Lett. 56, 2342Google Scholar
  9. 9.
    V. Marijasevic, P.Rosenthal, K.Shinohara, A.F.Marshall, R.H.Hammond and M.R.Beasley (to be published in J. Mater. Res.)Google Scholar
  10. 10.
    M. C. Nuss, P.M. Mankiewich, R.E. Howard, B.L. Straughn, T.E. Harvey, C.D. Brandie, G.W. Berkstresser, K.W. Goossen, and P.R. Smith, Appl. Phys. Lett. 54, 2265 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • J. Zhao
    • 1
  • Y. Q. Li
    • 2
  • C. S. Chern
    • 3
  • W. Huang
    • 3
  • P. Norris
    • 1
  • B. Gallois
    • 2
  • B. Kear
    • 3
  • P. Lu
    • 3
  • F. Cosandey
    • 3
  1. 1.EMCORE CorporationSomersetUSA
  2. 2.Stevens Institute of TechnologyHobokenUSA
  3. 3.Rutgers, The State UniversityNew BrunswickUSA

Personalised recommendations