Advertisement

Pinning by Oxygen Point Defects in Proton-Irradiated Ba2YCu3O7−δ

  • R. B. van Dover
  • E. M. Gyorgy
  • A. E. White
  • L. F. Schneemeyer
  • R. M. Fleming
  • R. J. Felder
  • J. V. Waszczak
Conference paper

Abstract

Proton irradiation of single-crystal Ba2YCu3O7−δ reproducibly increases the critical current tenfold, but does not alter the activation energy for flux creep. This can be accounted for in terms of a conventional flux pinning model. Based on this interpretation, as well as circumstantial structural evidence from TEM and X-ray studies, we propose that the chief effect of low-fluence proton irradiation is to create a higher density of oxygen point defects (which exist even in undamaged crystals). This conclusion is supported by observations of the effect of irradiation on electronic parameters.

Keywords

Critical Current Proton Irradiation Resistive Transition Oxygen Defect Flux Creep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For an extensive and continually updated bibliography see Ozawa, K. “A Bibliography of Irradiation Effect on High Temperature Superconductors” (Ozawa, Hitachi ERL, Ibaraki Japan) (unpublished).Google Scholar
  2. 2.
    van Dover RB, Gyorgy EM, Schneemeyer LF, Mitchell JW, Rao KV, Puzniak R, and Waszczak JV (1989) Nature 342: 55.ADSCrossRefGoogle Scholar
  3. 3.
    van Dover RB, Gyorgy EM, Schneemeyer LF, White AE, Glarum S, Felder RJ, and Waszczak JV (1990) Materials Res. Soc. Proceedings 169: 911.CrossRefGoogle Scholar
  4. 4.
    van Dover RB, Gyorgy EM, White AE, Schneemeyer LF, Felder RJ, and Waszczak JV, (1990) Appl. Phys. Lett. 56: 2681.ADSCrossRefGoogle Scholar
  5. 5.
    Civale L, Marwick AD, McElfresh MW, Worthington TW, Malozemoff AP, Holtzberg FH, Thompson JR, and Kirk MA (1990) Phys. Rev. Lett. 65: 1164ADSCrossRefGoogle Scholar
  6. 6.
    Daeumling M, Seuntjens JM, and Larbalestier DC (1990) Nature 346: 332.ADSCrossRefGoogle Scholar
  7. 7.
    Schneemeyer LF, Waszczak JV, Siegrist T, vanDover RB, Rupp LW, Batlogg B, Cava RJ, and Murphy DW, (1987) Nature 328: 601.ADSCrossRefGoogle Scholar
  8. 8.
    Gyorgy EM, van Dover RB, Jackson KA, Schneemeyer LF, and Waszczak JV, (1989) Appl. Phys. Lett. 55: 283.ADSCrossRefGoogle Scholar
  9. 9.
    Siegal MP, Phillips JM, Hebard AF, van Dover RB, Farrow RC, Tiefel TH, and Marshall, JH (unpublished).Google Scholar
  10. 10.
    Ziegler FJ and Biersack JP The Stopping and Range of Ions in Solids,(Pergamon, New York, 1985).Google Scholar
  11. 11.
    Hylton TL and Beasley MR (1990) Phys. Rev. B. (in press).Google Scholar
  12. 12.
    White AE, Short KT, Dynes RC, Levi AFJ, Anzlowar M, Baldwin KW, Polakos PA, Fulton TA, and Dunkelberger LN (1988) Appl. Phys. Lett. 53: 1010ADSCrossRefGoogle Scholar
  13. Valles JM, White AE, Short KT, Dynes RC, Garno JP, Levi AFJ, Anzlowar M, and Baldwin K (1989) Phys Rev. B 39: 11599.ADSCrossRefGoogle Scholar
  14. 13.
    Palstra TTM, Batlogg, B, Schneemeyer LF, Waszczak JV (unpublished).Google Scholar
  15. 14.
    Chen CH (private communication).Google Scholar
  16. 15.
    Tinkham, M (1988) Helv. Phys. Acta. 61: 443.Google Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • R. B. van Dover
    • 1
  • E. M. Gyorgy
    • 1
  • A. E. White
    • 1
  • L. F. Schneemeyer
    • 1
  • R. M. Fleming
    • 1
  • R. J. Felder
    • 1
  • J. V. Waszczak
    • 1
  1. 1.AT&T Bell LabsUSA

Personalised recommendations