Skip to main content

Computer Applications to Materials Science and Engineering

  • Chapter
Supercomputing
  • 90 Accesses

Abstract

Engineering materials are very complicated. It is not easy to treat practical materials rigorously. The simplest materials are pure elements. Single crystals are not very common; the usual materials are polycrystalline and multiphase. Some materials are amorphous. In this chapter, an atomic and molecular approach has been taken from first principles. Concerning metals, the cohesive energies, elastic constants, and electronic structures of pure crystalline metals and of intermetallic compounds have been calculated. Random alloys present difficulties for such calculations. Using interatomic potentials, molecular dynamics have been applied to calculate the dynamic behavior of materials. Examples of calculations are presented. Kinetic equations among defects have been solved. The atomic configurations and stability of interstitial atoms and the atomic configurations of dislocation cores are shown. Using molecular dynamics, the rapid quenching of liquid, the tensile deformation of amorphous and crystalline iron, the shear plastic deformation of copper small crystals, and lattice vibrations are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Seitz F (1940) Modern theory of solids. McGraw-Hill, New York

    MATH  Google Scholar 

  2. Future Technology Institute (1987) Technology prediction in Japan. Science and Technology Agency, Tokyo

    Google Scholar 

  3. Slater JC (1937) Phys Rev 51: 846

    Article  MATH  Google Scholar 

  4. Korringer J (1947) Physica 13: 392

    Article  MathSciNet  Google Scholar 

  5. Kohn W, Rostoker N (1954) Phys Rev 94: 1111

    Article  MATH  Google Scholar 

  6. Hohenberg P, Kohn W (1964) Phys Rev 136: B864

    Article  MathSciNet  Google Scholar 

  7. Anderson OK (1975) Phys Rev B12: 3060

    Article  Google Scholar 

  8. Skriver HL (1984) The LMTO method. Springer-Verlag, Berlin

    Google Scholar 

  9. Koelling DD, Arbman G (1975) J Phys F5: 2041

    Article  Google Scholar 

  10. Skriver HL (1976) Phys Rev B14: 5187

    Article  Google Scholar 

  11. Skriver HL (1977) Phys Rev B15: 1894

    Article  Google Scholar 

  12. Jan J-P, Skriver HL (1977) Phys F7: 957

    Article  Google Scholar 

  13. Jan J-P, Skriver HL (1977) J Phys F7 1719

    Article  Google Scholar 

  14. Skriver HL, Lengk’eek HP (1979) Phys Rev B19: 900

    Article  Google Scholar 

  15. Dunsworth AE, Jan J-P, Skriver HL (1978) J Phys F8: 1427

    Article  Google Scholar 

  16. Dunsworth AE, Jan J-P, Skriver HL (1979) J Phys F9: 1077

    Article  Google Scholar 

  17. Boulet RM, Dunsworth AE, Jan J-P, Skriver HL (1980) J Phys F10: 2197

    Article  Google Scholar 

  18. Herring C (1940) Phys Rev 57: 1169

    Article  MATH  Google Scholar 

  19. Wimmer E, Krakauer H, Weinert M, Freeman AJ (1981) Phys Rev B24: 864

    Article  Google Scholar 

  20. Weinert M, Wimmer E, Freeman AJ (1982) Phys Rev B26: 4571

    Article  Google Scholar 

  21. Wimmer E, Freeman J (1983) Phys Rev B28: 3074

    Article  Google Scholar 

  22. Bachelet GB, HaMann DR, Sculuter M (1982) Phys Rev B26, 4199

    Article  Google Scholar 

  23. Yin MT, Cohen ML (1982) Phys Rev B26: 5668

    Article  Google Scholar 

  24. Ihm J, Zunger A, Cohen ML (1979) J Phys C12: 4409

    Google Scholar 

  25. Ihm J, Zunger A, Cohen ML (1980) J Phys C13: 3095

    Google Scholar 

  26. Williams AR, Kubler J, Gelatt CD Jr (1979) Jr Phys Rev B19: 6094

    Article  Google Scholar 

  27. Soven P (1967) Phys Rev 156: 819

    Article  Google Scholar 

  28. Vineyard GH (1961) Discussions Faraday Soc 31: 7

    Article  Google Scholar 

  29. Vineyard GH (1963) J Phys Soc Japan 18 ( Suppl. Ill ) 144

    Google Scholar 

  30. Gibson JB, Goland AN, Milgram M, Vineyard GH (1960) Phys Rev 120: 1229

    Article  Google Scholar 

  31. Ergynsoy C, Vineyard GH, Englert A (1964) Phys Rev 133: A595

    Article  Google Scholar 

  32. Ergynsoy C, Vineyard GH, Shimizu A (1965) Phys Rev 139: A118

    Article  Google Scholar 

  33. Torrens McC. Chadderton LT (1967) Phys Rev 159: 671

    Article  Google Scholar 

  34. Yoshida M (1961) J Phys Soc Jap 16: 44

    Article  Google Scholar 

  35. Beeler JR Jr, Besco DG (1963) J Appl Phys 34: 2873

    Article  Google Scholar 

  36. Beeler JR Jr (1966) Phys Rev 150: 470

    Article  Google Scholar 

  37. Rahman A (1966) Phys Rev 45: 2585

    Google Scholar 

  38. Kawamura K, Okada I (1977) (in Japanese) Nippon Kinzokugakkai Kaiho 16: 834; Okaga I (1984) ibid. 23: 600

    Google Scholar 

  39. Finney JL (1970) Proc R Soc Lond A319: 479

    Article  Google Scholar 

  40. Yamamoto R, Haga K Shibuta H, Doyama M (1978) J Phys F8: LI79

    Google Scholar 

  41. Tanaka M (1986) J Phys Soc Jap 55: 3108; ibid. 55, 3428

    Article  Google Scholar 

  42. Yamamoto R, Mihara T, Doyama M (1978) Phys Stat Sol (A) 50: 165

    Article  Google Scholar 

  43. Yasui I, Inoue H (1985) J Non-Cryst Solids 71: 39

    Article  Google Scholar 

  44. Inoue H, Hasegawa H, Yasui I (1985) Phys Chem Glasses 26: 74

    Google Scholar 

  45. Doyama M, Yamamoto R (eds) (1987) Calculational Materials Science (in Japanese). Kaibundo, Tokyo

    Google Scholar 

  46. Born M, Mayer E (1932) Z Phys 75: 1

    Article  MATH  Google Scholar 

  47. Morse PM (1929) Phys Rev 34: 57

    Article  Google Scholar 

  48. Girifalco LA, Weizer VG (1959) Phys Rev 114: 687

    Article  Google Scholar 

  49. Doyama M, Cotterill RMJ (1967) In: Hasiguti RR (ed) Lattice defects and their interactions. Gordon and Breach, New York, p 79

    Google Scholar 

  50. Fumi FG, Tosi MP (1964) J Phys Chem Solids 25: 31

    Article  Google Scholar 

  51. Tosi MP, Fumi FG (1964) J Phys Chem Solids 25: 45

    Article  Google Scholar 

  52. Johnson RA, Wilson WD (1972) In: Gehlen PC, Beeler JR, Jaffee RI (eds) Interaction potentials and simulation of lattice defects. Plenum, New York, p 301

    Google Scholar 

  53. Gehlen PC, Beeler JR Jr, Jaffee RI (eds) (1972) Interaction potentials and simulation of lattice defects. Plenum, New York

    Google Scholar 

  54. Torrens IM (1972) Interatomic potentials. Academic, New York

    Google Scholar 

  55. Lee JK (ed) (1981) Interatomic potentials and crystalline defects. Metallurgical Society of AIME, New York

    Google Scholar 

  56. Daw MS, Baskes MI (1983) Phys Rev Lett 50: 1285

    Article  Google Scholar 

  57. Daw MS, Baskes MI (1984) Phys Rev B29: 6443–6453

    Article  Google Scholar 

  58. Car R, Parrinello M (1985) Phys Rev Lett 55: 2471

    Article  Google Scholar 

  59. Payne MC, Joanno JD, Allan DC, Teter MP, Vanderbilt DH (1986) Phys Rev Lett 56: 2656

    Article  Google Scholar 

  60. Car R, Parrinello M (1988) Phys Rev Lett 60: 204–207

    Article  Google Scholar 

  61. Needels M, Payne MC, Joannopoulos JD (1987) Phys Rev Lett 58: 1765–1768

    Article  Google Scholar 

  62. Needels M, Payne MC, Joannopoulos JD (1988) Phys Rev B: 5543–5546

    Google Scholar 

  63. Payne MC, Bristowe PD, Joannopoulos JD (1987) Phys Rev Lett 58: 1348–1364

    Article  Google Scholar 

  64. Hafner J (1987) From Hamiltonians to phase diagrams. Springer-Verlag, Berlin

    Google Scholar 

  65. Boesch WJ, Slaney JS (1964) Metal Progress 86: 109

    Google Scholar 

  66. Harada H, Ohno K, Yamagata T, Yokokawa T, Yamazaki M (1988) In: Reichman S, Duhl DN, Maurer G, Antolovich S, Lund C (eds) Superalloys. The Metallurgical Society

    Google Scholar 

  67. Esaki H, Morinaga M, Yukawa N, Adachi H (1986) Philos Mag A53: 709

    Article  Google Scholar 

  68. Chen AB, Sher A (1981) Phys Rev B23: 5645

    Article  Google Scholar 

  69. Pikett WE, Louie SG, Cohen ML (1987) Phys Rev B17: 815

    Google Scholar 

  70. Doyama M (1966) Phys Rev 148: 681–694

    Article  Google Scholar 

  71. Johnson RA, Brown E (1962) Phys Rev 127: 446

    Article  Google Scholar 

  72. Johnson RA, Dienes GJ, Damask AC (1964) Acta Met 12: 1215

    Article  Google Scholar 

  73. Cotterill RMJ, Doyama M (1966) Phys Rev 145: 465–478

    Article  Google Scholar 

  74. Doyama M, Cotterill RMJ (1966) Phys Rev 150: 448–455

    Article  Google Scholar 

  75. Gilman JJ (1969-1970) Comments on Solid State Physics 2: 37–39

    Google Scholar 

  76. Vitek V (1976) Proc Soc Lond 352A: 109

    Article  Google Scholar 

  77. Vitek V, Perrin RC, Bowen DK (1970) Philos Mag 21: 1049

    Article  Google Scholar 

  78. Yamaguchi M, Vitek V, Pope DP (1981) Philos Mag 43A: 1027; ibid. 43A, 1265

    Google Scholar 

  79. Yamaguchi M, Paidar V, Pope D, Vitek V (1982) Philos Mag 45A, 867; ibid. 45A, 882

    Google Scholar 

  80. Masuda K (1981) Philos Mag 43B: 1

    Google Scholar 

  81. Heggie M, Jones R (1983) Microscopy of semiconducting materials. Inst Phys Conf Ser 67: 45

    Google Scholar 

  82. Marklund S (1984, 1985 ) Solid State Commun 50: 185 (1984); 54, 555 (1985)

    Google Scholar 

  83. Masuda KJ, Kojima K, Hoshino T (1983) Jap J Appi Phys 22: 1240

    Article  Google Scholar 

  84. Veth H, Teichler H (1984) Philos Mag 49B: 371

    Article  Google Scholar 

  85. Kurosawa T (1964) J Phys Soc Jap 19: 2096

    Article  Google Scholar 

  86. Yamamoto R, Mihara T, Taira K, Doyama M (1979) Phys Lett 70A: 41

    Article  Google Scholar 

  87. Yamamoto R, Matsuoka H, Doyama M (1979) Physica Status Solid (A)51: 163

    Google Scholar 

  88. Doyama M, Yamamoto R (1985) In: Suzuki H, Ninomiya T, Sumino K, Takeuchi S (eds) Dislocation in solids. University of Tokyo Press, p 85

    Google Scholar 

  89. Doyama M, Yamamoto R (1989) Materials Science Forum 37: 77

    Article  Google Scholar 

  90. de Wett FW, Cotterill RMJ, Doyama M, (1966) Phys Lett 23: 309

    Article  Google Scholar 

  91. Yamamoto R, Haga K, Mihara T, Doyama M, (1978) Phys F8: L179

    Article  Google Scholar 

  92. Hashimoto M, Ishida Y, Yamamoto R, Doyama M (1984) Acta Met 32: 1

    Article  Google Scholar 

  93. Hashimoto M, Ishida Y, Wakayama S, Yamamoto R, Doyama M (1984) Acta Met 32: 13

    Article  Google Scholar 

  94. Wakayama S, Hashimoto M, Ishida Y, Yamamoto, Doyama M (1984) Acta Met 32: 21

    Article  Google Scholar 

  95. Takai O, Yamamoto R, Doyama M, Hisamatsu Y (1974) Phys Rev BIO: 3113

    Google Scholar 

  96. Kleinman L, Phillips JC, (1960) Phys Rev 117: 460

    Article  Google Scholar 

  97. Sinha SK (1966) 143: 422

    Google Scholar 

  98. Nicklow RM, Gilat G, Smith Hg, Raubenheimer LJ, Wilkinson MK, Bull AM (1966) Phys Soc 11: 263

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Doyama, M. (1991). Computer Applications to Materials Science and Engineering. In: Kondo, J., Matsuda, T. (eds) Supercomputing. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68138-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68138-0_4

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68140-3

  • Online ISBN: 978-4-431-68138-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics