Advertisement

Computer Applications to Materials Science and Engineering

  • Masao Doyama

Abstract

Engineering materials are very complicated. It is not easy to treat practical materials rigorously. The simplest materials are pure elements. Single crystals are not very common; the usual materials are polycrystalline and multiphase. Some materials are amorphous. In this chapter, an atomic and molecular approach has been taken from first principles. Concerning metals, the cohesive energies, elastic constants, and electronic structures of pure crystalline metals and of intermetallic compounds have been calculated. Random alloys present difficulties for such calculations. Using interatomic potentials, molecular dynamics have been applied to calculate the dynamic behavior of materials. Examples of calculations are presented. Kinetic equations among defects have been solved. The atomic configurations and stability of interstitial atoms and the atomic configurations of dislocation cores are shown. Using molecular dynamics, the rapid quenching of liquid, the tensile deformation of amorphous and crystalline iron, the shear plastic deformation of copper small crystals, and lattice vibrations are shown.

Keywords

Edge Dislocation Partial Dislocation Atomic Configuration Linear Augmented Plane Wave Shear Plastic Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Seitz F (1940) Modern theory of solids. McGraw-Hill, New YorkMATHGoogle Scholar
  2. 2.
    Future Technology Institute (1987) Technology prediction in Japan. Science and Technology Agency, TokyoGoogle Scholar
  3. 3.
    Slater JC (1937) Phys Rev 51: 846MATHCrossRefGoogle Scholar
  4. 4.
    Korringer J (1947) Physica 13: 392MathSciNetCrossRefGoogle Scholar
  5. 5.
    Kohn W, Rostoker N (1954) Phys Rev 94: 1111MATHCrossRefGoogle Scholar
  6. 6.
    Hohenberg P, Kohn W (1964) Phys Rev 136: B864MathSciNetCrossRefGoogle Scholar
  7. 7.
    Anderson OK (1975) Phys Rev B12: 3060CrossRefGoogle Scholar
  8. 8.
    Skriver HL (1984) The LMTO method. Springer-Verlag, BerlinGoogle Scholar
  9. 9.
    Koelling DD, Arbman G (1975) J Phys F5: 2041CrossRefGoogle Scholar
  10. 10.
    Skriver HL (1976) Phys Rev B14: 5187CrossRefGoogle Scholar
  11. 11.
    Skriver HL (1977) Phys Rev B15: 1894CrossRefGoogle Scholar
  12. 12.
    Jan J-P, Skriver HL (1977) Phys F7: 957CrossRefGoogle Scholar
  13. 13.
    Jan J-P, Skriver HL (1977) J Phys F7 1719CrossRefGoogle Scholar
  14. 14.
    Skriver HL, Lengk’eek HP (1979) Phys Rev B19: 900CrossRefGoogle Scholar
  15. 15.
    Dunsworth AE, Jan J-P, Skriver HL (1978) J Phys F8: 1427CrossRefGoogle Scholar
  16. 16.
    Dunsworth AE, Jan J-P, Skriver HL (1979) J Phys F9: 1077CrossRefGoogle Scholar
  17. 17.
    Boulet RM, Dunsworth AE, Jan J-P, Skriver HL (1980) J Phys F10: 2197CrossRefGoogle Scholar
  18. 18.
    Herring C (1940) Phys Rev 57: 1169MATHCrossRefGoogle Scholar
  19. 19.
    Wimmer E, Krakauer H, Weinert M, Freeman AJ (1981) Phys Rev B24: 864CrossRefGoogle Scholar
  20. 20.
    Weinert M, Wimmer E, Freeman AJ (1982) Phys Rev B26: 4571CrossRefGoogle Scholar
  21. 21.
    Wimmer E, Freeman J (1983) Phys Rev B28: 3074CrossRefGoogle Scholar
  22. 22.
    Bachelet GB, HaMann DR, Sculuter M (1982) Phys Rev B26, 4199CrossRefGoogle Scholar
  23. 23.
    Yin MT, Cohen ML (1982) Phys Rev B26: 5668CrossRefGoogle Scholar
  24. 24.
    Ihm J, Zunger A, Cohen ML (1979) J Phys C12: 4409Google Scholar
  25. 25.
    Ihm J, Zunger A, Cohen ML (1980) J Phys C13: 3095Google Scholar
  26. 26.
    Williams AR, Kubler J, Gelatt CD Jr (1979) Jr Phys Rev B19: 6094CrossRefGoogle Scholar
  27. 27.
    Soven P (1967) Phys Rev 156: 819CrossRefGoogle Scholar
  28. 28.
    Vineyard GH (1961) Discussions Faraday Soc 31: 7CrossRefGoogle Scholar
  29. 29.
    Vineyard GH (1963) J Phys Soc Japan 18 ( Suppl. Ill ) 144Google Scholar
  30. 30.
    Gibson JB, Goland AN, Milgram M, Vineyard GH (1960) Phys Rev 120: 1229CrossRefGoogle Scholar
  31. 31.
    Ergynsoy C, Vineyard GH, Englert A (1964) Phys Rev 133: A595CrossRefGoogle Scholar
  32. 32.
    Ergynsoy C, Vineyard GH, Shimizu A (1965) Phys Rev 139: A118CrossRefGoogle Scholar
  33. 33.
    Torrens McC. Chadderton LT (1967) Phys Rev 159: 671CrossRefGoogle Scholar
  34. 34.
    Yoshida M (1961) J Phys Soc Jap 16: 44CrossRefGoogle Scholar
  35. 35.
    Beeler JR Jr, Besco DG (1963) J Appl Phys 34: 2873CrossRefGoogle Scholar
  36. 36.
    Beeler JR Jr (1966) Phys Rev 150: 470CrossRefGoogle Scholar
  37. 37.
    Rahman A (1966) Phys Rev 45: 2585Google Scholar
  38. 38.
    Kawamura K, Okada I (1977) (in Japanese) Nippon Kinzokugakkai Kaiho 16: 834; Okaga I (1984) ibid. 23: 600Google Scholar
  39. 39.
    Finney JL (1970) Proc R Soc Lond A319: 479CrossRefGoogle Scholar
  40. 40.
    Yamamoto R, Haga K Shibuta H, Doyama M (1978) J Phys F8: LI79Google Scholar
  41. 41.
    Tanaka M (1986) J Phys Soc Jap 55: 3108; ibid. 55, 3428CrossRefGoogle Scholar
  42. 42.
    Yamamoto R, Mihara T, Doyama M (1978) Phys Stat Sol (A) 50: 165CrossRefGoogle Scholar
  43. 43.
    Yasui I, Inoue H (1985) J Non-Cryst Solids 71: 39CrossRefGoogle Scholar
  44. 44.
    Inoue H, Hasegawa H, Yasui I (1985) Phys Chem Glasses 26: 74Google Scholar
  45. 45.
    Doyama M, Yamamoto R (eds) (1987) Calculational Materials Science (in Japanese). Kaibundo, TokyoGoogle Scholar
  46. 46.
    Born M, Mayer E (1932) Z Phys 75: 1MATHCrossRefGoogle Scholar
  47. 47.
    Morse PM (1929) Phys Rev 34: 57CrossRefGoogle Scholar
  48. 48.
    Girifalco LA, Weizer VG (1959) Phys Rev 114: 687CrossRefGoogle Scholar
  49. 49.
    Doyama M, Cotterill RMJ (1967) In: Hasiguti RR (ed) Lattice defects and their interactions. Gordon and Breach, New York, p 79Google Scholar
  50. 50.
    Fumi FG, Tosi MP (1964) J Phys Chem Solids 25: 31CrossRefGoogle Scholar
  51. 51.
    Tosi MP, Fumi FG (1964) J Phys Chem Solids 25: 45CrossRefGoogle Scholar
  52. 52.
    Johnson RA, Wilson WD (1972) In: Gehlen PC, Beeler JR, Jaffee RI (eds) Interaction potentials and simulation of lattice defects. Plenum, New York, p 301Google Scholar
  53. 53.
    Gehlen PC, Beeler JR Jr, Jaffee RI (eds) (1972) Interaction potentials and simulation of lattice defects. Plenum, New YorkGoogle Scholar
  54. 54.
    Torrens IM (1972) Interatomic potentials. Academic, New YorkGoogle Scholar
  55. 55.
    Lee JK (ed) (1981) Interatomic potentials and crystalline defects. Metallurgical Society of AIME, New YorkGoogle Scholar
  56. 56.
    Daw MS, Baskes MI (1983) Phys Rev Lett 50: 1285CrossRefGoogle Scholar
  57. 57.
    Daw MS, Baskes MI (1984) Phys Rev B29: 6443–6453CrossRefGoogle Scholar
  58. 58.
    Car R, Parrinello M (1985) Phys Rev Lett 55: 2471CrossRefGoogle Scholar
  59. 59.
    Payne MC, Joanno JD, Allan DC, Teter MP, Vanderbilt DH (1986) Phys Rev Lett 56: 2656CrossRefGoogle Scholar
  60. 60.
    Car R, Parrinello M (1988) Phys Rev Lett 60: 204–207CrossRefGoogle Scholar
  61. 61.
    Needels M, Payne MC, Joannopoulos JD (1987) Phys Rev Lett 58: 1765–1768CrossRefGoogle Scholar
  62. 62.
    Needels M, Payne MC, Joannopoulos JD (1988) Phys Rev B: 5543–5546Google Scholar
  63. 63.
    Payne MC, Bristowe PD, Joannopoulos JD (1987) Phys Rev Lett 58: 1348–1364CrossRefGoogle Scholar
  64. 64.
    Hafner J (1987) From Hamiltonians to phase diagrams. Springer-Verlag, BerlinGoogle Scholar
  65. 65.
    Boesch WJ, Slaney JS (1964) Metal Progress 86: 109Google Scholar
  66. 66.
    Harada H, Ohno K, Yamagata T, Yokokawa T, Yamazaki M (1988) In: Reichman S, Duhl DN, Maurer G, Antolovich S, Lund C (eds) Superalloys. The Metallurgical SocietyGoogle Scholar
  67. 67.
    Esaki H, Morinaga M, Yukawa N, Adachi H (1986) Philos Mag A53: 709CrossRefGoogle Scholar
  68. 68.
    Chen AB, Sher A (1981) Phys Rev B23: 5645CrossRefGoogle Scholar
  69. 69.
    Pikett WE, Louie SG, Cohen ML (1987) Phys Rev B17: 815Google Scholar
  70. 70.
    Doyama M (1966) Phys Rev 148: 681–694CrossRefGoogle Scholar
  71. 71.
    Johnson RA, Brown E (1962) Phys Rev 127: 446CrossRefGoogle Scholar
  72. 72.
    Johnson RA, Dienes GJ, Damask AC (1964) Acta Met 12: 1215CrossRefGoogle Scholar
  73. 73.
    Cotterill RMJ, Doyama M (1966) Phys Rev 145: 465–478CrossRefGoogle Scholar
  74. 74.
    Doyama M, Cotterill RMJ (1966) Phys Rev 150: 448–455CrossRefGoogle Scholar
  75. 75.
    Gilman JJ (1969-1970) Comments on Solid State Physics 2: 37–39Google Scholar
  76. 76.
    Vitek V (1976) Proc Soc Lond 352A: 109CrossRefGoogle Scholar
  77. 77.
    Vitek V, Perrin RC, Bowen DK (1970) Philos Mag 21: 1049CrossRefGoogle Scholar
  78. 78.
    Yamaguchi M, Vitek V, Pope DP (1981) Philos Mag 43A: 1027; ibid. 43A, 1265Google Scholar
  79. 79.
    Yamaguchi M, Paidar V, Pope D, Vitek V (1982) Philos Mag 45A, 867; ibid. 45A, 882Google Scholar
  80. 80.
    Masuda K (1981) Philos Mag 43B: 1Google Scholar
  81. 81.
    Heggie M, Jones R (1983) Microscopy of semiconducting materials. Inst Phys Conf Ser 67: 45Google Scholar
  82. 82.
    Marklund S (1984, 1985 ) Solid State Commun 50: 185 (1984); 54, 555 (1985)Google Scholar
  83. 83.
    Masuda KJ, Kojima K, Hoshino T (1983) Jap J Appi Phys 22: 1240CrossRefGoogle Scholar
  84. 84.
    Veth H, Teichler H (1984) Philos Mag 49B: 371CrossRefGoogle Scholar
  85. 85.
    Kurosawa T (1964) J Phys Soc Jap 19: 2096CrossRefGoogle Scholar
  86. 86.
    Yamamoto R, Mihara T, Taira K, Doyama M (1979) Phys Lett 70A: 41CrossRefGoogle Scholar
  87. 87.
    Yamamoto R, Matsuoka H, Doyama M (1979) Physica Status Solid (A)51: 163Google Scholar
  88. 88.
    Doyama M, Yamamoto R (1985) In: Suzuki H, Ninomiya T, Sumino K, Takeuchi S (eds) Dislocation in solids. University of Tokyo Press, p 85Google Scholar
  89. 89.
    Doyama M, Yamamoto R (1989) Materials Science Forum 37: 77CrossRefGoogle Scholar
  90. 90.
    de Wett FW, Cotterill RMJ, Doyama M, (1966) Phys Lett 23: 309CrossRefGoogle Scholar
  91. 91.
    Yamamoto R, Haga K, Mihara T, Doyama M, (1978) Phys F8: L179CrossRefGoogle Scholar
  92. 92.
    Hashimoto M, Ishida Y, Yamamoto R, Doyama M (1984) Acta Met 32: 1CrossRefGoogle Scholar
  93. 93.
    Hashimoto M, Ishida Y, Wakayama S, Yamamoto R, Doyama M (1984) Acta Met 32: 13CrossRefGoogle Scholar
  94. 94.
    Wakayama S, Hashimoto M, Ishida Y, Yamamoto, Doyama M (1984) Acta Met 32: 21CrossRefGoogle Scholar
  95. 95.
    Takai O, Yamamoto R, Doyama M, Hisamatsu Y (1974) Phys Rev BIO: 3113Google Scholar
  96. 96.
    Kleinman L, Phillips JC, (1960) Phys Rev 117: 460CrossRefGoogle Scholar
  97. 97.
    Sinha SK (1966) 143: 422Google Scholar
  98. 98.
    Nicklow RM, Gilat G, Smith Hg, Raubenheimer LJ, Wilkinson MK, Bull AM (1966) Phys Soc 11: 263Google Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Masao Doyama
    • 1
  1. 1.Department of Materials EngineeringNishi Tokyo Science UniversityUenohara, YamanashiJapan

Personalised recommendations