Recent Development of Finite Element Methods in the High-Speed Computing Environment

  • Noboru Kikuchi
  • Toshikazu Torigaki
  • Katsuyuki Suzuki
  • Jose Miranda Guedes


We shall review how finite element methods have been developed and what subjects researchers in the United States are studying at present in the high-speed computing environment.


Finite Element Method Finite Element Model Topology Optimization Design Domain Homogenization Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Argyris JH, Patton PC (1966) Computer-oriented research in a university milieu. Appi Mech Rev 19: 1029–1039Google Scholar
  2. 2.
    Smarr L (1988) The computational science revolution: technology, methodology, and sociology. In: Wilhelmson RB (ed) High-speed computing: scientific applications and algorithm design. University of Illinois Press, Urbana Chicago, pp 12–33Google Scholar
  3. 3.
    Argyris JH (1970) The impact of the digital computer on engineering sciences. Parts I and II, Aeronautical J Aeronautical Soc, pp 13–41, 111–127Google Scholar
  4. 4.
    Bruner M, Gordon A, Vonk B (1989) Computer aided engineering network. College of Engineering, University of MichiganGoogle Scholar
  5. 5.
    Moler C, Herskovitz S, Little L, Bangert S. MATLAB, The Math Works, Inc., 20 North Main St, Suite 250, Sherborn, MA 01770, USA, phone (617) 653-1215; E-mail: na.mathworks@score.stanford.eduGoogle Scholar
  6. 6.
    Babuska I, Rheinboldt WC (1978) Error estimates for adaptive finite element computations. SIAM J Numer Anal 15: 736–754MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bank RE (1984) Locally computed error estimates for elliptic equations. Proceedings international conference on accuracy estimates and adaptive refinements in finite element computations. Arantes E Oliveira ER et al. (eds) Lisbon, Portugal, Vol 1 pp 21–30Google Scholar
  8. 8.
    Clough RW (1965) The finite element method in structural mechanics. In: Zienkiewicz OC, Holister GS (eds) Stress analysis. WileyGoogle Scholar
  9. 9.
    Oden JT (1989) Progress in adaptive methods in computational fluid dynamics. In: Flaherty JE et al. (eds) Adaptive methods for partial differential equations. SIAM, PhiladelphiaGoogle Scholar
  10. 10.
    Peraire J, Vahdati M, Morgan K, Zienkiewicz OC (1987) Adaptive remeshing for compressible flow computations. J Comput Phys 72: 449–463MATHCrossRefGoogle Scholar
  11. 11.
    Zienkiewicz OC, Zhu JZ, Liu YC, Morgan K, Peraire J (1988) Error estimates and adaptivity from elasticity to high-speed compressible flow. In: Whiteman JR (ed) MAFELAP IV. Academic, London, pp 483–512Google Scholar
  12. 12.
    Zienkiewicz OC, Huang GC (1989) Adaptive modelling of transient coupled metal forming processes. In: Thompson EG et al. (eds) NUMIFORM89 Numerical methods in industrial forming processes. Balkema, Rotterdam, pp 3–10Google Scholar
  13. 13.
    Tezuka A, Kikuchi N (1989) H-adaptation in finite element analysis with global mesh refinement. Report 89 - 4, Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann ArborGoogle Scholar
  14. 14.
    Bennett JA, Botkin ME (1985) Structural shape optimization with geometric problem description and adaptive mesh refinement. AIAA J 23: 458–464CrossRefGoogle Scholar
  15. 15.
    Bachmann PL, Wittchen SL, Shephard MS, Grice KR, Yerry MA (1987) Robust geometrically based automatic two-dimensional mesh generation. Int J Numer Methods Eng 24: 1043–1078CrossRefGoogle Scholar
  16. 16.
    Shephard MS, Niu Q, Baehmann P (1989) Some results using stress projections for error indication and estimation. In: Flaherty JE et al. (eds) Adaptive methods for partial differential equations. SIAM, Philadelphia, pp 83–99 (Chap. 7 )Google Scholar
  17. 17.
    Szabo B, Sharmann CJ (1988) Hierarchic plate and shell models based on p-extension. Int J Numer Methods Eng 26: 1855–1881MATHCrossRefGoogle Scholar
  18. 18.
    Babuska I (1988) The p- and h-p versions of the finite element method: the state of the art. In: Dwoyer DL et al. (eds) Finite elements: theory and application. Springer-Verlag, New York, pp 199–239Google Scholar
  19. 19.
    Szabo BA (1985) PROBE: theoretical manual. Noetic Technologies Corporation, St. Louis, MissouriGoogle Scholar
  20. 20.
    Belytschko T, Fish J, Bayliss A (to be published) The spectral overlay on finite elements for problems with high gradients. Comput Methods Appl MechGoogle Scholar
  21. 21.
    Patera AT (1984) Spectral element method for fluid dynamics. Laminar flow in a channel expansion. J Comput Phys 54: 468–488MATHCrossRefGoogle Scholar
  22. 22.
    Ortiz M, Leroy Y, Needleman (1988) A finite element method for localization failure analysis. Comput Methods Appl Mech Eng 61: 189–214Google Scholar
  23. 23.
    Hughes TJR, Ferencz RM, Hallquist JO (1988) Experience with an element-by-element iterating strategy for solid mechanics on a CRAY XMP/48. In: Wilhelmson RB (ed) High-speed computing: scientific applications and algorithm design. University of Illinois Press, Urbana Chicago, pp 180–195Google Scholar
  24. 24.
    Hashin Z (1970) Theory of composite materials. In: Wend FW, Liebowitz H, Perrone N (eds) Mechanics of composite materials. Pergamon, OxfordGoogle Scholar
  25. 25.
    Benssousan A, Lions JL, Papanicoulau G (1978) Asymptotic analysis for periodic structures. North Holland, AmsterdamGoogle Scholar
  26. 26.
    Sanches-Palencia E (1980) Non homogeneous media and vibration theory. Lecture Notes in Physics 127. Springer-Verlag, BerlinGoogle Scholar
  27. 27.
    Duvaut G (1976) Analyse functionelle et mécanique des milieux continueu applications à l’etude de matérieux composites élastiques à structure périodiques. Homogénéisation. In: Koiter WT (ed) Theoretical and applied mechanics. North Holland, pp 119–132Google Scholar
  28. 28.
    Lene F (1984) Thèse de Doctorat d’Etat, Université Pierre et Marie Curie, ParisGoogle Scholar
  29. 29.
    Murât F, Tartar L (1985) Calculs des variations et homogénéization. In: Les methodes de l’homogenéization: theory et applications en physique. Coll. de la Dir. de Etudes et Recherches d’Electricité de France, Eyrolles, p 319Google Scholar
  30. 30.
    Kohn R (1988) Recent progress in the mathematical modeling of composite materials (preprint). Courant Institute, New YorkGoogle Scholar
  31. 31.
    Begis I, Dinari S, Duvaut G, Hassim A, Pistre F (1978) Modulef and composite materials (preprint). INRIA, Rocquencourt, Les ChesnayGoogle Scholar
  32. 32.
    Guedes JM (1989) A computational method for mechanics of nonlinear composites. PhD thesis, University of Michigan, Ann Arbor, MI 48109Google Scholar
  33. 33.
    Prager W (1974) A note on discretized Micheli structures. Comput Mech Appi Mech Eng 3: 349–355MATHCrossRefGoogle Scholar
  34. 34.
    Micheli AGM (1904) The limits of economy of material in framed structures. Philos Mag 6: 589–597Google Scholar
  35. 35.
    Fleury C (1979) Structural weight optimization by dual methods of convex programming. Int J Numer Meth Eng 14: 1761–1783MATHCrossRefGoogle Scholar
  36. 36.
    Zienkiewicz OC, Campbell JS (1973) Shape optimization and sequential linear programming. In: Gallagher RH, Zienkiewicz OC (eds) Optimum structural design Wiley, New York, 109–126Google Scholar
  37. 37.
    Haftka RT, Gandhi RV (1986) Structural shape optimization-A survey. Comput Mech Appi Mech Eng 57: 91–106MATHCrossRefGoogle Scholar
  38. 38.
    Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Mech Appi Mech Eng 71: (1988) pp. 197–224MathSciNetCrossRefGoogle Scholar
  39. 39.
    Suzuki K, Kikuchi N (1989) Shape and topology optimization for generalized layout problems using the homogenization method. To appear in 1991. Comput Methods Appi Mech Eng, Technical Report 89-06. Computational Mechanics Laboratory, Department of Mechanical Engineering and Applied Mechanics, The University of Michigan, 1989, Ann Arbor, Michigan, 48109, USA.Google Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Noboru Kikuchi
    • 1
  • Toshikazu Torigaki
    • 1
  • Katsuyuki Suzuki
    • 1
  • Jose Miranda Guedes
    • 1
  1. 1.Computational Mechanics Laboratory, College of EngineeringThe University of MichiganAnn ArborUSA

Personalised recommendations