Skip to main content

New Trends in the Direction of Synthetic Actors

  • Conference paper

Abstract

This paper surveys the techniques involved in research related to synthetic actors. Research in this area may be arbitrarily split into two levels: 1) the geometric and physical level consisting of the animation and modeling of the human structure itself, and 2) the environment-dependent level consisting of the animation of the actor in his/her environment. These levels are not independent and research in a third level should allow the animator to specify the behaviour in terms of events, goals and constraints. This third level corresponds to task-level and behavioural animation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan JB, Wyvill B, Witten IA (1989) A Methodology for Direct Manipulation of Polygon Meshes, Proc. Computer Graphics International ’89, Leeds, pp.451–469.

    Google Scholar 

  • Armstrong WW (1979) Recursive Solution to the Equations of Motion of an N-Link Manipulator, Proc. 5th World Congress Theory Mach. Mechanisms, Vol. 2, pp. 1343–1346

    Google Scholar 

  • Armstrong WW and Green MW (1985) Dynamics for Animation of Characters with Deformable Surfaces in: N.Magnenat-Thalmann and D.Thalmann (Eds) Computer-generated Images, Springer, pp.209– 229.

    Google Scholar 

  • Armstrong WW, Green M and Lake R (1987) Near real-time Control of Human Figure Models, IEEE Computer Graphics and Applications, Vol. 7, No 6, pp. 28–38

    Article  Google Scholar 

  • Arnaldi B., Dumont G., Hegron G., Magnenat–Thalmann N., Thalmann D. (1989) Animation Control with Dynamics in: State-of-the-Art in Computer Animation, Springer, Tokyo, pp. 113–124

    Google Scholar 

  • Badler NI (1989) Artificial Intelligence, Natural Language, and Simulation for Human Animation, in: Magnenat-Thalmann N, Thalmann D (Eds) State-of-the-Art in Computer Animation, Springer, Tokyo, pp. 19–32

    Google Scholar 

  • Badler NI and Morris MA (1982) Modelling Flexible Articulated Objects, Proc. Computer Graphics ’82, Online Conf., pp.305–314.

    Google Scholar 

  • Badler NI and Smoliar SW (1979) Digital Representation of Human Movement, ACM Computing Surveys, March issue, pp. 19–38.

    Google Scholar 

  • Baecker R (1969) Picture-driven Animation, Proc. AFIPS Spring Joint Computer Conf., Vol. 34, pp. 273–288.

    Google Scholar 

  • Badler NI et al. (1986) Multi-Dimensional Input Techniques and Articulated Figure Positioning by Multiple Constraints, 1986 Workshop on Interactive 3D Graphics, Chapel Hill, North Carolina

    Google Scholar 

  • Badler NI, Korein JD, Korein JU, Radack GM and Brotman LS (1985) Positioning and Animating Figures in a Task-oriented Environment, The Visual Computer, Vol.1, No4, pp.212–220.

    Article  Google Scholar 

  • Baraff D (1989) Analytical methods for Dynamic Simulation of Non-Penetrating Rigid Bodies, Proc. SIGGRAPH ’89, Computer Graphics, Vol. 23, No3, pp.223–232

    Article  Google Scholar 

  • Barr AH (1984) Global and local deformations of solid primitives. Proc. SIGGRAPH ’84, Computer Graphics 18 (3): 21–30

    Article  Google Scholar 

  • Barzel R, Barr AH (1988) A Modeling System Based on Dynamic Constraints, Proc. SIGGRAPH ’88, Computer Graphics, Vol.22, No4, pp. 179–188

    Article  Google Scholar 

  • Benesh R and Benesh J (1956) An Introduction to benesh Dance Notation, A. and C. Black, London

    Google Scholar 

  • Blum R (1979) Representing Three-dimensional Objects in Your Computer, Byte, May 1979, pp. 14–29

    Google Scholar 

  • Bohm J (1987) A comparison of different contact algorithms with applications, Comp. Structures, Vol 26 No 1–2 pp 207–221

    Article  Google Scholar 

  • Boulic R, Magnenat-Thalmann N, Thalmann D (1990) Human Free-Walking Model for a Real-time Interactive Design of Gaits, Computer Animation ’90, Springer-Verlag, Tokyo

    Google Scholar 

  • Breen D, Getto P, Apodaca A, Schmidt D, Sarachan B (1987) The Clockworks; An Object-Oriented Computer Animation System, Proc Eurographics ’87, North Holland, pp.275–282

    Google Scholar 

  • Breen DE (1989) Choreographing Goal-Oriented Motion Using Cost Functions, in: Magnenat-Thalmann N, Thalmann D (Eds) State-of-the-Art in Computer Animation, Springer, Tokyo, pp. 141–152

    Google Scholar 

  • Breen DE, Wozny MJ (1989) Message-based Choreography for Computer Animation, in: Magnenat-Thalmann N, Thalmann D (Eds) State-of-the-Art in Computer Animation, Springer, Tokyo, pp. 69–82

    Google Scholar 

  • Brooks RA (1983) Planning Collision-Free Motions for Pick-and-Place Operations, International Journal of Robotics, Vol.2, No4, pp.19–26

    Article  MathSciNet  Google Scholar 

  • Brotman LS, Netravali AN (1988) Motion Interpolation by Optimal Control, Proc. SIGGRAPH ’88, Computer Graphics, Vol.22, No4, pp. 179–188

    Article  Google Scholar 

  • Bruderlin A, Calvert TW (1989) Goal Directed, Dynamic Animation of Human Walking, Proc. SIGGRAPH ’89, Computer Graphics, Vol. 23, No3

    Google Scholar 

  • Calvert TW and Chapman J (1978) Notation of Movement with Computer Assistance, Proc. ACM Annual Conf., Vol. 2, 1978, pp. 731–736

    Google Scholar 

  • Catmull E (1972) A System for Computed-generated movies, Proc. ACM Annual Conference, pp.422–431.

    Chapter  Google Scholar 

  • Chadwick J, Haumann DR, Parent RE (1989) Layered Construction for Deformable Animated Characters, Proc. SIGGRAPH ’89, Computer Graphics, Vol. 23, No3, pp.234–243

    Google Scholar 

  • Cohen MF (1989) Gracefulness and Style in Motion Control, Proc. Mechanics, Control and Animation of Articulated Figures, MIT (to be published in a book by Morgan publ., USA )

    Google Scholar 

  • Csuri C, Hackathorn R, Parent R, Carlson W and Howard M (1979) Towards an interactive high visual complexity animation system, Computer Graphics, Vol.13, No2, pp. 289–299.

    Article  Google Scholar 

  • Drewery K, Tsotsos J (1986) Goal Directed Animation using English Motion Commands, Proc. Graphics Interface ’86, pp.131–135

    Google Scholar 

  • Ekman P and Friesen W (1978) Facial Action Coding System, Consulting Psychologists Press, Palo Alto.

    Google Scholar 

  • Eshkol N and Wachmann A (1958) Movement Notation, Weidenfeld and Nicolson, London

    Google Scholar 

  • Featherstone R (1983) Position and Velocity Transformations Between Robot End-Effector Coordinates and Joint Angles, Intern. Journal of Robotics Research, Vol.2, No2, pp.35–45

    Article  Google Scholar 

  • Forsey D, Wilhelms J (1988) Techniques for Interactive Manipulation of Articulated Bodies Using Dynamics Analysis, Proc. Graphics Interface ’88, pp.8–15

    Google Scholar 

  • Girard M (1987) Interactive Design of 3D Computer-animated Legged Animal Motion, IEEE Computer Graphics and Applications, Vol. 7, No 6, pp. 39–51

    Article  MathSciNet  Google Scholar 

  • Girard M (1989) Constrained Optimization of Articulated Animal Movement in Computer Animation, Proc. Mechanics, Control and Animation of Articulated Figures, MIT (to be published in a book by Morgan publ., USA )

    Google Scholar 

  • Girard M and Maciejewski A A (1985) Computational Modeling for Computer Generation of Legged Figures, Proc. SIGGRAPH ’85, Computer Graphics, Vol. 19, No3, pp.263–270

    Article  Google Scholar 

  • Gourret JP, Magnenat-Thalmann N, Thalmann D (1989) Simulation of Object and Human Skin Deformations in a Grasping Task, Proc. SIGGRAPH ’89, Computer Graphics, Vol. 23, No 3, pp. 21–30

    Article  Google Scholar 

  • Guenter B (1989) A System for Simulating Human Facial Expression, in: Magnenat-Thalmann N, Thalmann D (Eds) State-of-the-Art in Computer Animation, Springer, Tokyo, pp. 191–202

    Google Scholar 

  • Guenter B (1989) A System for Simulating Human Facial Expression, in: Magnenat-Thalmann N, Thalmann D (Eds) State-of-the-Art in Computer Animation, Springer, Tokyo, pp. 191–202

    Google Scholar 

  • Gurfinkel VS and Fomin SV (1974) Biomechanical Principles of Constructing Artificial walking Systems, in: Theory and Practice of Robots and Manipulators, Vol. 1, Springer-Verlag, NY, pp. 133–141

    Google Scholar 

  • Hahn JK (1988) Realistic Animation of Rigid Bodies, Proc. SIGGRAPH ’88, Computer Graphics, Vol. 22, No 4, pp. 299–308

    Article  Google Scholar 

  • Haumann DR (1987) Modeling the Physical Behavior of Flexible Objects, SIGGRAPH ’87 Course Notes on Topics in Physically Based Modeling

    Google Scholar 

  • Haumann DR, Parent RE (1988) The Behavioral Test-bed: Obtaining Complex Behavior from Simple Rules, The Visual Computer, Vol. 4, No 6, pp. 332–347.

    Article  Google Scholar 

  • Hemami H and Farnsworth RL (1977) Postural and Gait Stability of a Planar Five Link Biped by Simulation, IEEE Trans, on Automatic Control, AC-22, No3, pp.452–458.

    Google Scholar 

  • Hollerbach JM (1980) A Recursive Lagrangian Formulation of Manipulator Dynamics and a Comparative Study of Dynamics Formulation Complexity, IEEE Trans, on Systems, Man, and Cybernetics, Vol. SMC-10, No11, pp.730–736

    Google Scholar 

  • Hollerbach JM, Sahar G (1983) Wrist-Partitioned, Inverse Kinematic Accelerations and Manipulator Dynamics, Intern. Journal of Robotics Research, Vol.2, No4, pp.61–76.

    Article  Google Scholar 

  • Hutchinson A (1970) Labanotation, Theatre Books, NY

    Google Scholar 

  • Inman VT, Ralston HJ and Todd F (1981) Human Walking, Baltimore, Williams and Wilkins

    Google Scholar 

  • Isaacs PM and Cohen MF (1987) Controlling Dynamic Simulation with Kinematic Constraints, Bahvior Functions and Inverse Dynamics, Proc. SIGGRAPH ’87, Computer Graphics, Vol.21, No4, pp.215–224

    Article  Google Scholar 

  • Isaacs PM, Cohen MF (1988) Mixed Methods for Complex Kinematic Constraints in Dynamic Figure Animation, The Visual Computer, Vol.4, No6, pp.296–305

    Article  Google Scholar 

  • Kahn ME (1969) The Near-Minimum-Time Control of Open-Loop Articulated Kinematic Chains, Stanford Artificial Intelligence project, AIM-106

    Google Scholar 

  • Kajiya JT and Kay TL (1989) Rendering Fur with Three Dimensional Textures, Proc. SIGGRAPH ’89, Computer Graphics, Vol.23, No3), pp. 271–280.

    Article  Google Scholar 

  • Komatsu K (1988) Human Skin Model Capable of Natural Shape Variation, The Visual Computer, Vol.3, No5, pp.265–271

    Article  Google Scholar 

  • Korein J, Badler NI (1982) Techniques for Generating the Goal-directed Motion of Articulated Structures, IEEE Computer Graphics and Applications, Vol.2, No9, pp.71–81

    Article  Google Scholar 

  • Lafleur B, Magnenat-Thalmann N, Thalmann D (1990) Collision Detection in Cloth Animation, Technical Report, MIRALab, University of Geneva

    Google Scholar 

  • Lamoreux LW (1971) Kinematic Measurements in the Study of Human Walking, Bulletin of Prosthetics Research, Vol.BPR 10, No15

    Google Scholar 

  • Leblanc A, Thalmann D (1990) Rendering Antialiased Hair Using an Alpha-Blending Method, Technical Report, Computer Graphics Lab, Swiss Federal Institute of Technology

    Google Scholar 

  • Lee MW, Kunii TL (1989) Animation Design: A database-Oriented Animation Design Method with a Video Image Analysis Capability, in: Magnenat-Thalmann N, Thalmann D (Eds) State-of-the-Art in Computer Animation, Springer, Tokyo, pp. 97–112

    Google Scholar 

  • Lethebridge TC and Ware C (1989) A Simple Heuristically-based Method for Expressive Stimulus-response Animation, Computers and Graphics, Vol.13, No3, pp.297–303

    Article  Google Scholar 

  • Low KH, Dubey RN (1986) A Comparative Study of Generalized Coordinates for Solving the Inverse- Kinematics Problem of 6R Robot Manipulator, Intern. Journal of Robotics Research, Vol.5, No4, pp.69–88.

    Article  Google Scholar 

  • Lozano-Perez T and Wesley MA (1979) An Algorithm for Planning Collision-Free Paths Among Polyhedral Obstacles, Comm.ACM, Vol.22, No10, pp. 560–570.

    Article  Google Scholar 

  • Luh JYS, Walker MW and Paul RPC (1980) On-line Computational Scheme for Mechanical Manipulators, Journal of Dynamic Systems, Measurement and Control, Vol. 102, pp. 103–110.

    MathSciNet  Google Scholar 

  • Maciejewski AA and Klein CA (1985) Obstacle Avoidance for Kinematics Redundant Manipulators in Dynamically Varying Environments, Intern. Journ. of Robotics Research, Fall

    Google Scholar 

  • Magnenat-Thalmann N, Laperriere R and Thalmann D (1988) Joint-dependent Local Deformations for Hand Animation and Object Grasping, Proc. Graphics Interface ’88

    Google Scholar 

  • Magnenat-Thalmann N, Minh HT, de Angelis M, Thalmann D (1989) Design, Transformation and Animation of Human Faces, The Visual Computer, Vol.5, No3, pp.32–39

    Article  MATH  Google Scholar 

  • Magnenat-Thalmann N, Primeau E, Thalmann D (1988b) Abstract Muscle Action Procedures for Human Face Animation, The Visual Computer, Vol.3, No5

    Google Scholar 

  • Magnenat-Thalmann N, Thalmann D (1987) The direction of synthetic actors in the film Rendezvous a Montreal. IEEE Computer Graphics and Applications 7 (12), pp. 9–19.

    Article  Google Scholar 

  • McGhee and Iswandhi GI (1979) Adaptive Locomotion of a Multilegged Robot over Rough Terrain, IEEE Trans. Systems, Man and Cybernetics, April, pp. 176–182

    Google Scholar 

  • McMahon T (1984) Mechanics of Locomotion, Intern. Journ. of Robotics Research, Vol.3, No2, pp.4–28.

    Article  Google Scholar 

  • Miller G (1988b) The Motion Dynamics of Snakes and Worms, Proc. SIGGRAPH ’88, Computer Graphics, Vol.22, No4, pp.169–173

    Article  Google Scholar 

  • Miller GSP (1988) From Wire-Frame to Furry Animals, Proc. Graphics Interface 1988, pp. 138–146

    Google Scholar 

  • Miura H and Shimoyama I (1984) Dynymic Walk of a Biped, International Journal of Robotics, Vol.3, No2, pp.60–74.

    Article  Google Scholar 

  • Moore M and Wilhelms J (1988) Collision Detection and Response for Computer Animation, Proc. SIGGRAPH ’88, Computer Graphics, Vol. 22, No 4, pp. 289–298.

    Article  Google Scholar 

  • Nahas M, Huitric H, Saintourens M (1987) Animation of a B-spline figure, The Visual Computer, Vol.3, No5,pp.272–276.

    Article  Google Scholar 

  • Murray MP, Drought AB and Kory RC (1964) Walking Patterns of Normal Men, Journal of Bone Joint Surgery, Vol.46A, No2, pp.335–360

    Google Scholar 

  • Orin D, McGhee R, Vukobratovic M and Hartoch G (1979) Kinematic and Kinetic Analysis of Open-Chain Linkages Utilizing Newton-Euler methods, Mathematical Biosciences, Vol. 31, pp. 107–130.

    Article  Google Scholar 

  • Parke FI (1982) Parameterized Models for Facial Animation, IEEE Computer Graphics and Applications, Vol. 2, No 9, pp. 61–68

    Article  Google Scholar 

  • Pearce A, Wyvill B, Wyvill G and Hill D (1986) Speech and expression: a Computer Solution to Face Animation, Proc. Graphics Interface ’86, pp. 136–140.

    Google Scholar 

  • Piatt JC, Barr AH (1988) Constraint method for flexible models, Proc.SIGGRAPH ’88, pp 279–288

    Google Scholar 

  • Piatt S, Badler N (1981) Animating Facial Expressions, Proc. SIGGRAPH ’81, pp.245–252.

    Google Scholar 

  • Popplestone RJ, Ambler AP and Bellos IM (1980) An Interpreter for a Language for Describing Assemblies, Artificial Intelligence, Vol. 14, pp. 79–107

    Article  Google Scholar 

  • Renault O, Magnenat-Thalmann N, Thalmann D (1990) A Vision-Based Approach to Behavioural Animation, Visualization and Computer Animation Journal, John Wiley, Vol. 1, No1 (July 1990).

    Google Scholar 

  • Reynolds C (1987) Flocks, Herds, and Schools: A Distributed Behavioral Model, Proc.SIGGRAPH ’87, Computer Graphics, Vol.21, No4, pp.25–34 (also published in: Proc. Computer Animation CG 87, Online, pp.71–87)

    Article  MathSciNet  Google Scholar 

  • Reynolds CW (1982) Computer Animation with Scripts and Actors, Proc. SIGGRAPH ’82, pp.289–296.

    Chapter  Google Scholar 

  • Saunders JB, Inman VT and Eberhart (1953) The Major Determinants in Normal and Pathological Gait, Journal of Bone Joint Surgery, Vol. 35A, pp. 543–558

    Google Scholar 

  • Schroder P, Zeltzer D (1988) Pathplanning inside Bolio, in: D.Thalmann (Ed.) Synthetic Actors: The Impact of Artificial Intelligence and Robotics on Animation, Course Notes SIGGRAPH ’88, pp. 194–207.

    Google Scholar 

  • Sederberg TW, Parry SR (1986) Free-form deformation of solid geometric models. Proc. SIGGRAPH ’86, Computer Graphics, Vol.20, No4, pp.151–160

    Article  Google Scholar 

  • Smith AR (1983) Digital Filmmaking, Abacus, Vol.1, No1, pp.28–45

    Google Scholar 

  • Stepanenko Y and Vukobratovic M (1976) Dynamics of Articulated Open Chain Active Mechanisms, Mathematical Biosciences, Vol. 28, pp. 137–170.

    Article  MathSciNet  Google Scholar 

  • Terzopoulos D, Fleischer K (1988) Deformable Models, The Visual Computer, Vol.4, No6, pp.306–331

    Article  Google Scholar 

  • Terzopoulos D, Piatt J, Barr A, Fleischer K (1987) Elastically Deformable Models, Proc.SIGGRAPH’87, Computer Graphics, Vol 21 No 4, pp 205–214

    Article  Google Scholar 

  • Uicker JJ (1965) On the Dynamic Analysis of Spatial Linkages Using 4x4 Matrices, Ph.D Dissertation, Northwestern University, Evanston, Illinois

    Google Scholar 

  • Watanabe Y and Suenaga Y (1989) Drawing Human Hair Using Wisp Model, Proc. Computer Graphics International, Springer, Tokyo, pp. 691–700.

    Google Scholar 

  • Waters K (1987) A Muscle Model for Animating Three-Dimensional Facial Expression, Proc. SIGGRAPH ’87, Vol.21, No4, pp. 17–24.

    Article  MathSciNet  Google Scholar 

  • Weil J (1986) The Synthesis of Cloth Objects, Proc. SIGGRAPH ’86, Computer Graphics, Vol. 20, No. 4, pp. 49–54

    Article  MathSciNet  Google Scholar 

  • Wilhelms J (1987) Using Dynamic Analysis for Realistic Animation of Articulated Bodies, IEEE Computer Graphics and Applications, Vol. 7, No 6, pp. 12–27

    Article  Google Scholar 

  • Wilhelms J and Barsky B (1985) Using Dynamic Analysis to Animate Articulated Bodies such as Humans and Robots, in: N.Magnenat-Thalmann and D.Thalmann (Eds) Computer-generated Images, Springer, pp.209–229.

    Google Scholar 

  • Witkin A, Fleischer K, Barr A (1987) Energy Constraints on Parameterized Models, Proc. SIGGRAPH ’87, Computer Graphics, Vol.21, No4, pp.225–232

    Article  Google Scholar 

  • Witkin A, Kass M (1988) Spacetime Constraints, Proc. SIGGRAPH ’88, Computer Graphics, Vol.22, No4, pp. 159–168

    Article  Google Scholar 

  • Wyvill B, Wyvill G (1989) Field functions for iso-surfaces, The Visual Computer, Vol.5, No3

    Google Scholar 

  • Zeltzer D (1982) Motor Control Techniques for Figure Animation, IEEE Computer Graphics and Applications, Vol.2, No9, pp.53–59.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Tokyo

About this paper

Cite this paper

Magnenat-Thalmann, N. (1990). New Trends in the Direction of Synthetic Actors. In: Chua, TS., Kunii, T.L. (eds) CG International ’90. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68123-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68123-6_2

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68125-0

  • Online ISBN: 978-4-431-68123-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics