Advertisement

Trace Elements in Total Parenteral Nutrition

  • Khursheed N. Jeejeebhoy
Conference paper

Abstract

Cotzias (1) defined an essential trace element as one which has the following characteristics:
  1. (1)

    Present in healthy tissues of all living things.

     
  2. (2)

    Constant tissue concentration from one animal to the next.

     
  3. (3)

    Withdrawal leads to a reproducible functional and/or structural abnormality.

     
  4. (4)

    Addition of the element prevents the abnormality.

     
  5. (5)

    The abnormality is associated with a specific biochemical change.

     
  6. (6)

    The biochemical change is prevented and/or cured along with the observed clinical abnormality.

     

Keywords

Total Parenteral Nutrition Zinc Deficiency Copper Deficiency Selenium Deficiency Sulfite Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Cotzias GC: Trace Substances Environmental Health - Proceedings of the University of Missouri Annual Conference. 1967; p 5Google Scholar
  2. (2).
    Golden MHN, Golden BE: Trace elements. Br Med Bull 1981; 37: 31–36Google Scholar
  3. (3).
    Abumrad NN, Schneider AJ, Steele D, et al: Amino acid intolerance during prolonged total parenteral nutrition reversed by molybdate therapy. Am J Clin Nutr 1981; 34: 2551–2559PubMedGoogle Scholar
  4. (4).
    Finch CA, Huebers H: Perspectives in iron metabolism. N Engl J Med 1982; 306: 1520–1526PubMedCrossRefGoogle Scholar
  5. (5).
    Donaldson RM, Barreras RF: Intestinal absorption of trace quantities of chromium. J Lab Clin Med 1966; 68: 484–493PubMedGoogle Scholar
  6. (6).
    World Health Organization, WHO Tech Rep Ser 1973; #532Google Scholar
  7. (7).
    Bush JA, Mahoney JP, Gubler CJ, et al: Studies on copper metabolism: transfer of radio-copper between erythrocytes and plasma. J Lab Clin Med 1956; 47: 898–906PubMedGoogle Scholar
  8. (8).
    Sternleib I, Morell AG, Tucker WD, et al: The incorporation of copper into ceruloplasmin in vivo: studies with copper-64 and copper-67. J Clin Invest 1961; 40: 1834–1840CrossRefGoogle Scholar
  9. (9).
    Wolman SL, Anderson GH, Marliss EB, et al: Zinc in total parenteral nutrition: requirements and metabolic effects. Gastroenterology 1979; 76: 458–467PubMedGoogle Scholar
  10. (10).
    Diplock AT: Metabolic and functional defects in selenium deficiency. Phil Trans R Soc Lond B 1981; 294: 105–117CrossRefGoogle Scholar
  11. (11).
    Shoden A, Gabrio BW, Finch CA: The relationship between ferritin and hemosiderin in rabbits and man. J Biol Chem 1953; 204: 823–830PubMedGoogle Scholar
  12. (12).
    Dubach R, Moore CV, Callender ST: Studies in iron transportation and metabolism: excretion of iron as measured by isotope technique. J Lab Clin Med 1955; 45: 599–615PubMedGoogle Scholar
  13. (13).
    Robinson MF, McKenzie JM, Thomson CD, et al: Metabolic balance of zinc, copper, cadmium, iron, molybdenum and selenium in young New Zealand women. Br J Nutr 1973; 30: 195–205PubMedCrossRefGoogle Scholar
  14. (14).
    Foy H, Kondi A: Anaemias of the tropics; relation to iron intake, absorption and losses during growth, pregnancy and lactation. J Trop Med Hyg 1957; 60: 105–118PubMedGoogle Scholar
  15. (15).
    Wheby MSA, Jones LRG, Crosby WH: Studies on iron absorption. Intestinal regulatory mechanics. J Clin Invest 1964; 43: 1433–1442PubMedCrossRefGoogle Scholar
  16. (16).
    Osterloh K, Forth W: Determination of transferrin-like immunoreactivity in the mucosal homogenate of the duodenum, jejunum and ileum of normal and iron-deficient rats. Blut 1981; 43: 227–235PubMedCrossRefGoogle Scholar
  17. (17).
    Morgan EH, Walters MNI: Iron storage in human disease. Fractionation of hepatic and splenic iron into ferritin and hemosiderin with histochemical correlations. J Clin Path 1963; 16: 101–107PubMedCrossRefGoogle Scholar
  18. (18).
    Lipschitz DA, Cook JD, Finch CA: A clinical evaluation of serum ferritin as an index of iron stores. N Engl J Med 1974; 290: 1213–1216PubMedCrossRefGoogle Scholar
  19. (19).
    Bainton DF, Finch CA: The diagnosis of iron deficiency anemia. Am J Med 1964; 37: 62–70PubMedCrossRefGoogle Scholar
  20. (20).
    Peters ML, Mäher M, Brennan MF: Minimal IV iron requirements in TPN. (Abst.) JPEN 1980; 4 (6): 601Google Scholar
  21. (21).
    Kong KW, Tsallas G: Dilute iron dextran formulation for addition to parenteral nutrient solutions. Am J Hosp Pharm 1980; 37: 206–210Google Scholar
  22. (22).
    Vallee BL, Falchuk KH: Zinc and gene expression. Phil Trans R Soc Lond B 1981; 294: 185–197CrossRefGoogle Scholar
  23. (23).
    Prasad AS: Zinc in Human Nutrition. Boca Raton, Fl, CRC Press 1979; pp 1–80Google Scholar
  24. (24).
    Hambidge KM, Neldner KH, Walravens PA: Zinc, acrodermatitis enteropathica and congenital malformations. Lancet 1975; i:577–578Google Scholar
  25. (25).
    Golden MHN, Golden BE, Harland PSEG: Zinc and immunocompetenc e in protein-energy malnutrition. Lancet 1978; i:1226–1227Google Scholar
  26. (26).
    Fernandes G, Nair M, Qnoe K, et al: Impairment of cell-mediated immunity functions by dietary zinc deficiency in mice. Proc Natl Acad Sci USA 1979; 76: 457–461PubMedCrossRefGoogle Scholar
  27. (27).
    Golden MHN, Golden BE, Jackson AA: Skin breakdown in kwashiorkor responds to zinc. Lancet 1980; i:1256Google Scholar
  28. (28).
    Tipton IH, Cook MJ: Trace elements in human tissue. II. Adult subjects from the United States. Health Phys 1963; 9: 103–145PubMedCrossRefGoogle Scholar
  29. (29).
    Underwood EJ: Zinc. Ch. 8 in Trace Elements in Human and Animal Nutrition, 4th ed. New York, Academic Press 1977; pp 196–242Google Scholar
  30. (30).
    Kirchgessner M, Roth H, Weigand E: Trace elements in human health and disease. In: Zinc and Copper, Vol. 1. Prasad AS (Ed) New York, Academic Press, 1976; pp 189–225Google Scholar
  31. (31).
    Davies NT: Studies on the absorption of zinc by rat intestine. Br J Nutr 1980; 43: 189–203PubMedCrossRefGoogle Scholar
  32. (32).
    Prasad AS, Schulert AR, Sandstead HH, et al: Zinc, iron and nitrogen content of sweat in normal and deficient subjects. J Lab Clin Med 1963; 62: 84–89PubMedGoogle Scholar
  33. (33).
    Abu-Hairdan DK, Migdal SD, Whitehouse R, et al: Disparate urinary zinc (ZN) handling in response to ZN infusion and amino acids. (Abst.) Kidney Int 1979; 16: 818Google Scholar
  34. (34).
    Smith KT, Cousins RJ: Quantitative aspects of zinc absorption by isolated, vascularly perfused rat intestine. J Nutr 1980; 110: 316–323PubMedGoogle Scholar
  35. (35).
    Biesel WR,.Pekarek RS, Wannemacher RW Jr: The impact of infectious disease on trace-element metabolism of the host. In: Trace Element Metabolism in Animals, Vol. 2. Hoekstra WG, et al (eds). Baltimore, University Park Press, 1974; pp 217–240Google Scholar
  36. (36).
    Talbot TR, Ross JF: The zinc content of plasma erythrocytes of patients with pernicious anemia, sickle cell anemia, polycythemia vera, leukemia and neoplastic disease. Lab Invest 1960; 9: 174–184PubMedGoogle Scholar
  37. (37).
    Vallee GL, Wacker WEC, Bartholomay AF, et al: Zinc metabolism in hepatic dysfunction. Ann Int Med 1959; 50: 1077–1091PubMedGoogle Scholar
  38. (38).
    Vikbladh I: Studies on zinc in blood. Scand J Clin Lab Invest 1950;. 2: 143–148Google Scholar
  39. (39).
    Hambidge KM: Zinc deficiency in man: its origin and effects. Phil Trans R Soc Lond B 1981; 294: 129–144CrossRefGoogle Scholar
  40. (40).
    Widdowson EM, Dauncey J, Shaw JCL: Trace elements in foetal and early postnatal development. Proc Nutr Soc 1974; 33: 275–284PubMedCrossRefGoogle Scholar
  41. (41).
    James BE, MacMahon RA: Balance studies of 9 elements during complete intravenous feeding of small premature infants. Aust Ped J 1976;. 12(3):154–162Google Scholar
  42. (42).
    Ricour C, Duhamel J-F, Gross J, et al: Estimates of trace element requirements of children receiving total parenteral nutrition. Arch Fr Pediat 1977; 34: 92–100Google Scholar
  43. (43).
    Mason KE: A conspectus of research on copper metabolism and requirements in man. J Nutr 1979; 109: 1979–2066PubMedGoogle Scholar
  44. (44).
    Cartwright GE, Wintrobe MM: Copper metabolism in normal subjects. Am J Clin Nutr 1964; 14: 224–232PubMedGoogle Scholar
  45. (45).
    Evans JL, Abraham PA: Anemia, iron storage and ceruloplasmin in copper nutrition in the growing rat. J Nutr 1973; 103: 196–201PubMedGoogle Scholar
  46. (46).
    O’Dell BL: Roles for iron and copper in connective tissue biosynthesis. Phil Trans R Soc Lond B 1981; 294: 91–104CrossRefGoogle Scholar
  47. (47).
    Fell BF: Pathological consequences of copper deficiency and cobalt deficiency. Phil Trans R Soc Lond B 1981; 294: 153–169CrossRefGoogle Scholar
  48. (48).
    Osaki S, Johnson DA, Freiden E: The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J Biol Chem 1966; 241: 2746–2751PubMedGoogle Scholar
  49. (49).
    Golden MHN: Trace elements in human nutrition. Hum Nutr Clin Nutr 1982; 36C: 185–202PubMedGoogle Scholar
  50. (50).
    Pinnell SR, Martin GR: The cross-linking of collagen and elastin. Proc Natl Acad Sci USA 1968; 61: 708–714PubMedCrossRefGoogle Scholar
  51. (51).
    Siegal RC, Pinnell SR, Martin GR: Cross-linking of collagen and elastin. Properties of lysyl oxidase. Biochemistry 1970; 9: 4486–4492CrossRefGoogle Scholar
  52. (52).
    Cordano A, Baertl JM, Graham GG: Copper deficiency in infancy. Pediatrics 1964; 34: 324–336PubMedGoogle Scholar
  53. (53).
    Hamilton EI, Minski MJ, Cleary JJ: The concentration and distribution of some stable elements in healthy human tissue from the United Kingdom. Sci Ibtal Environ 1972–73; 1: 341–374Google Scholar
  54. (54).
    Gubler CJ, Lahey ME, Cartwright GE, et al: IX. Studies on copper metabolism: transportation of copper in blood. J Clin Invest 1953; 32: 405–415PubMedCrossRefGoogle Scholar
  55. (55).
    Bremner I: Absorption, transport and storage of copper. In: Biological Roles of Copper. Ciba Foundation Symposium #79. Excerpta Medica Amsterdam 1980; pp 23–48Google Scholar
  56. (56).
    Owen CA: Absorption and excretion of 64Cu-labelled copper by the rat. Am J Physiol 1964; 207: 1203–1206PubMedGoogle Scholar
  57. (57).
    Hall AC, Young BW, Bremner I: Intestinal metallothionein and the mutual antagonism between copper and zinc. J Inorg Biochem 1979; 11: 57–66PubMedCrossRefGoogle Scholar
  58. (58).
    Guidelines for essential trace element preparations for parenteral use. A statement by an expert panel. JAMA 1979; 242: 2051–2054Google Scholar
  59. (59).
    Sandstead HH: Copper bioavailability and requirements. Am J Clin Nutr 1982; 35: 809–814PubMedGoogle Scholar
  60. (60).
    Shike M, Roulet M, Kurian R, et al: Copper metabolism and requirements in total parenteral nutrition. Gastroenterology 1981; 81: 290–297PubMedGoogle Scholar
  61. (61).
    Jacob RA, Sandstead HH, Munoz JM, et al: Whole body surface loss of trace metals in normal males. Am J Clin Nutr 1981; 34: 1379–1383PubMedGoogle Scholar
  62. (62).
    Henkin RI: On the role of adrenocorticosteroids in the control of zinc and copper metabolism. In: Trace Element Metabolism in Animals, Vol. 2. Hoekstra WG, et al (ed). Baltimore, University Park Press, 1974; pp 647–651Google Scholar
  63. (63).
    Askari A, Long CL, Murray RL, et al: Zinc and copper balance in severely injured patients. (Abst.) Fed Proc 1979; 38: 707Google Scholar
  64. (64).
    Bremner I, Mills CF: Absorption, transport and tissue storage of essential trace elements. Phil Trans R Soc Lond B 1981; 294: 75–89CrossRefGoogle Scholar
  65. (65).
    Kovalsky W: The geochemical ecology of organisms under conditions of varying contents of trace elements in the environment. In: Trace Element Metabolism in Animals. Mills, CF, Vol. 1. Edinburgh, Livingstone, 1970; pp 385–397Google Scholar
  66. (66).
    Wintrobe MM, Cartwright GE, Gubler CJ: Studies on the function and metabolism of copper. J Nutr 1953; 50: 395–419PubMedGoogle Scholar
  67. (67).
    Halsted JA, Hackley BM, Smith JC: Plasma zinc and copper in pregnancy and after oral contraceptives. Lancet 1968; ii:278–279Google Scholar
  68. (68).
    Hambidge KM: Increase in hair copper concentration with increasing distance from the scalp. Am J Clin Nutr 1973; 26: 1212–1215PubMedGoogle Scholar
  69. (69).
    Jacobson S, Western PO: Balance study of twenty trace elements during total parenteral nutrition in man. Brit J Nutr 1977; 37: 107–126PubMedCrossRefGoogle Scholar
  70. (70).
    Phillips GD, Garnys VP: Parenteral administration of trace elements to critically ill patients. Anaesth Intensive Care 1981; 9: 221–225PubMedGoogle Scholar
  71. (71).
    Schwarz K, Mertz W: Chromium (III) and the glucose tolerance factor. Arch Biochem Biophys 1959; 85: 292–295PubMedCrossRefGoogle Scholar
  72. (72).
    Mertz W, Roginski EE, Schwarz K: Effect of tri valent chromium complexes on glucose uptake by epididymal fat tissue of rats. J Biol Chem 1961; 236: 318–322PubMedGoogle Scholar
  73. (73).
    Roginski EE, Mertz W: Effects of chromium 3+ supplementation on glucose and amino acid metabolism in rats fed a low protein diet. J Nutr 1969; 97: 525–530PubMedGoogle Scholar
  74. (74).
    Jeejeebhoy KN, Chu RC, Marliss EB, et al: Chromium deficiency, glucose intolerance and neuropathy reversed by chromium supplementation in a patient receiving long-term total parenteral nutrition. Am J Clin Nutr 1977; 30: 531–538PubMedGoogle Scholar
  75. (75).
    Schroeder HA, Balassa JJ, Tipton IH: Abnormal trace metals in man. J Chron Dis 1962; 15: 941–964PubMedCrossRefGoogle Scholar
  76. (76).
    Offenbacher EG, Pi-Sunyer FX: Beneficial effects of chromium-rich yeast on glucose tolerance and blood lipids in elderly subjects. Diabetes 1980; 29: 919–925PubMedCrossRefGoogle Scholar
  77. (77).
    Toepfer WW, Mertz W, Polansky MM, et al: Synthetic organic chromium complexes and glucose tolerance. J Agri Food Chem 1977; 25: 162–166CrossRefGoogle Scholar
  78. (78).
    Anderson RA, Mertz W: Glucose tolerance factor: an essential dietary agent. Trends in Biochem Sci 1977; 2: 277–279CrossRefGoogle Scholar
  79. (79).
    Schroeder HA: The role of chromium in mammalian nutrition. Am J Clin Nutr 1968; 21: 230–244PubMedGoogle Scholar
  80. (80).
    Hopkins LL Jr: Distribution in the rat of physiological amounts of injected Cr51 (III) with time. Am J Physiol 1965; 209: 731–735PubMedGoogle Scholar
  81. (81).
    Hambidge KM: Chromium nutrition in the mother and the growing child. Ch. 9 in Newer Trace Elements in Nutrition. Mertz E, Cornatzer WE (eds). New York, Dekker, 1971; pp 169–194Google Scholar
  82. (82).
    Doisy RJ, Streeten DHP, Souma ML, et al: Metabolism of chromium in human subjects, normal, elderly and diabetic subjects. Ch. 8 in Newer Trace Elements in Nutrition, Mertz E, Cornatzer WE (eds). New York, Marcel Dekker, 1971; pp 155–168Google Scholar
  83. (83).
    Anderson RA, Polansky MM, Bryden NA, et al: Urinary chromium excretion of human subjects: effects of chromium supplementation and glucose loading. Am J Clin Nutr 1982; 36: 1184–1193PubMedGoogle Scholar
  84. (84).
    Pekarek RS, Hauer EC, Bayfield EJ, et al: Relationship between serum chromium concentrations and glucose utilization in normal and infected subjects. Diabetes 1975; 24: 350–353PubMedCrossRefGoogle Scholar
  85. (85).
    Mertz W, Roginski EE, Reba RC: Biological activity and fate of trace quantities of intravenous chromium (III) in the rat. Am J Physiol 1965; 209: 489–494PubMedGoogle Scholar
  86. (86).
    Glinsmann WH, Feldman FJ, Mertz W: Plasma chromium after glucose administration. Science 1966; 152: 1243–1245PubMedCrossRefGoogle Scholar
  87. (87).
    Anderson RA, Bryden NA, Polansky MM: Serum chromium of human subjects: effects of chromium supplementation and glucose. Am J Clin Nutr 1985; 41: 571–577PubMedGoogle Scholar
  88. (88).
    Freund H, Atamian S, Fischer JE: Chromium deficiency during total parenteral nutrition. JAMA 1979; 241: 496–498PubMedCrossRefGoogle Scholar
  89. (89).
    Chance B, Sies B, Boveris A: Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979; 59: 527–605PubMedGoogle Scholar
  90. (90).
    Hill Hao: The superoxide ion and the toxicity of molecular oxygen. In: New Trends in Bio-inorganic Chemistry. Williams RJP, Da Silva JRRF (eds). London, Academic Press, 1978; pp 173–208Google Scholar
  91. (91).
    Rotruck JT, Pope AL, Ganther HE, et al: Selenium: biochemical role as a component of glutathione peroxidase. Science 1973; 179: 588–590PubMedCrossRefGoogle Scholar
  92. (92).
    Diplock AT, Lucy JA: The biochemical modes of action of vitamin E and selenium: a hypothesis. FEBS Lett 1973; 29: 205–210Google Scholar
  93. (93).
    Dickson RC, Tomlinson RN: Selenium in blood and human tissues. Clin Chim Acta 1967; 16: 311–321PubMedCrossRefGoogle Scholar
  94. (94).
    Underwood EJ: Selenium. Ch. 12 in Trace Elements in Human and Animal Nutrition. 4th ed. New York, Academic Press, 1977; pp 302–346Google Scholar
  95. (95).
    Thompson CD, Stewart RDH: The metabolism of 75Se-Selenite in young women. Br J Nutr 1974; 32: 47–57CrossRefGoogle Scholar
  96. (96).
    Levander OA, Sutherland B, Morris VC, et al: Selenium balance in young men during selenium depletion and repletion. Am J Clin Nutr 1981; 34: 2662–2669PubMedGoogle Scholar
  97. (97).
    Stewart RDH, Griffiths NM, Thomson CD, et al: Quantitative selenium metabolism in normal New Zealand women. Brit J Nutr 1978; 40: 45–54PubMedCrossRefGoogle Scholar
  98. (98).
    van Rij AM, Thomson CD, McKenzie JM, et al: Selenium deficiency in total parenteral nutrition. Am J Clin Nutr 1979; 32: 2076–2085PubMedGoogle Scholar
  99. (99).
    van Rij AM, McKenzie JM, Thomson CD, et al: Selenium supplementation in total parenteral nutrition. JPEN 1981; 5: 120–124CrossRefGoogle Scholar
  100. (100).
    Robinson MF, McKenzie JM, Thomson CD, et al: Metabolic balance of zinc, copper, cadmium, iron, molybdenum and selenium in young New Zealand women. Brit J Nutr 1973; 30: 195–205PubMedCrossRefGoogle Scholar
  101. (101).
    Thompson JN, Erdody P, Smith DC: Selenium content of food consumed by Canadians. J Nutr 1975; 105: 274–277PubMedGoogle Scholar
  102. (102).
    Chen X, Yang G, Chen J et al: Studies on the relations of selenium and Keshan disease. Biol Trace Elem Res 1980; 2: 91–107CrossRefGoogle Scholar
  103. (103).
    Johnson RA, Baker SS, Fallon JT, et al: An occidental case of cardiomyopathy and selenium deficiency. N Engl J Med 1981; 304: 1210–1212PubMedCrossRefGoogle Scholar
  104. (104).
    Fleming CR, Lie JT/ McCall JT, et al: Selenium deficiency and fatal cardiomyopathy in a patient on home parenteral nutrition. Gastroenterology 1982; 83: 689–693PubMedGoogle Scholar
  105. (105).
    Quercia RA, Korn S, O’Neill D, et al: Selenium deficiency and fatal cardiomyopathy in a patient receiving long-term home parenteral nutrition. Clin Pharm 1984; 3: 531–535PubMedGoogle Scholar
  106. (106).
    Van Vleet JF: An evaluation of protection offered by various dietary supplements against experimentally induced selenium-vitamin E deficiency in ducklings. Am J Vet Res 1977; 38: 1231–1236Google Scholar
  107. (107).
    Ihurlow PM, Grant JP: Vitamin E, essential fatty acids and platelet function during total parenteral nutrition. (Abst.) JPEN 1981; 4: 586Google Scholar
  108. (108).
    Losowsky MS, Leonard PF: Evidence of vitamin E deficiency in patients with malabsorption of alcoholism and the effects of therapy. Gut 1967; 8: 539–543Google Scholar
  109. (109).
    Ali M, Gudbranson CG, McDonald JWD: Inhibition of human platelet cyclooxygenase of alpha-tocopherol. Prostaglandins Med 1980; 4: 79–85PubMedCrossRefGoogle Scholar
  110. (110).
    Hafeman DG, Hoekstra WG: Lipid peroxidation in vivo during vitamin E and selenium deficiency in the rat as monitored by ethane evolution. J Nutr 1977; 107: 666–672Google Scholar
  111. (111).
    Lemoyne M, Van Gossum A, Kurian R, et al: Breath pentane analysis as an index of lipid peroxidation: a functional test of vitamin E status. AM J Clin Nutr 1987; 46: 267–272Google Scholar
  112. (112).
    Cynamon HA, Isenberg JN, Nguyen CH: Erythrocyte malondialdehyde release in vitro: a functional measure of vitamin E status. Clin Chim Acta 1985; 151: 169–176CrossRefGoogle Scholar
  113. (113).
    Jeejeebhoy KN, Langer B, Tsallas G, et al: Total parenteral nutrition at home: studies in patients surviving 4 months to 5 years. Gastroenterology 1976; 71: 943–953PubMedGoogle Scholar
  114. (114).
    Doisy EA Jr: Micronutrient controls on biosynthesis of clotting proteins and cholesterol. In: Trace Substances in Environmental Health, Hemphill, DD, ed. Vol. VI. Columbia, MO. University of Missouri Press, 1973; pp 193–199Google Scholar
  115. (115).
    Weisiger RA, Fridovich I: Superoxide dismutase (organelle specificity). J Biol Chem 1973; 248: 3582–3592PubMedGoogle Scholar
  116. (116).
    Cotzias GC: Manganese in health and disease. Physiol Rev 1958; 38: 503–532PubMedGoogle Scholar
  117. (117).
    Greenberg DW, Copp DH, Cuthbertson EM: Studies in mineral metabolism with the aid of artificial radioactive isotopes. J Biol Chem 1943; 147: 749–757Google Scholar
  118. (118).
    Bertinchamps AJ, Miller ST, Cotzias GC: Interdependence of routes excreting manganese. Am J Physiol 1966; 211: 217–224PubMedGoogle Scholar
  119. (119).
    Wenlock RW, Buss DH, Dixon EJ: Trace nutrients. 2. Manganese in British foods. Br J Nutr 1979; 41: 253–261PubMedCrossRefGoogle Scholar
  120. (120).
    McLeod BE, Robinson MF: Metabolic balance of manganese in young women. Br J Nutr 1972; 27: 221–227PubMedCrossRefGoogle Scholar
  121. (121).
    de Renzo EC, Kaieita E, Heytier P, et al: Identification of the xanthine oxidase factor as molybdenum. Arch Bioch Biophy 1953; 45: 247–253CrossRefGoogle Scholar
  122. (122).
    Cohen HJ, Fridovich I, Rajagopalan KV: Hepatic sulfate oxidase. A functional role for molybdenum. J Biol Chem 1971; 246: 374–382PubMedGoogle Scholar
  123. (123).
    Mahler HR, Mackler B, Green DE, et al: Studies on metalloflavoproteins. III. Aldehyde oxidase: a molybdoflavoprotein. J Biol Chem 1954; 210: 465–480PubMedGoogle Scholar
  124. (124).
    Cohen HJ, Drew RT, Johnson J, et al: Molecular basis of the biological function of molybdenum: the relationship between sulfite oxidase and the acute toxicity of bisulfite and S02. Proc Natl Acad Sei USA, 1973; 70: 3655–3659CrossRefGoogle Scholar
  125. (125).
    Underwood EJ: Molybdenum: Ch. 4 in Trace Elements in Human and Animal Nutrition, New York, Academic Press, 1977; pp 109–131Google Scholar
  126. (126).
    Shike M, Harrison JE, Sturtridge WC, et al: Metabolic bone disease in patients receiving long-term total parenteral nutrition. Ann Int Med 1980; 92: 343–350PubMedGoogle Scholar
  127. (127).
    Shike M, Sturtridge WC, Tarn CS, et al: A possible role of vitamin D in the genesis of parenteral-nutrition-induced metabolic bone disease. Ann Int Med 1981; 95: 560–568PubMedGoogle Scholar
  128. (128).
    Hands LJ, Royle GT, Kettlewell MCW: Vitamin K requirements in patients receiving total parenteral nutrition. Br J Surg 1985; 72: 665–667PubMedCrossRefGoogle Scholar
  129. (129).
    Kishi H, Nishii S, Ono T: Thiamin and pyridoxine requirements during intravenous hyperalimentation. Am J Clin Nutr 1979; 32: 332–338PubMedGoogle Scholar
  130. (130).
    Velez RJ, Myers B, Guber MS: Severe acute metabolic acidosis (acute beriberi): an avoidable complication of total parenteral nutrition. JPEN 1985; 9: 216–219CrossRefGoogle Scholar
  131. (131).
    Matsusue S, Kashihara S, Takeda H, et al: Biotin deficiency during total parenteral nutrition: its clinical manifestation and plasma nonesterified fatty acid level. JPEN 1985; 9: 760–763CrossRefGoogle Scholar
  132. (132).
    Guidelines for multivitamin preparations for parenteral use. American Medical Association, Department of Foods and Nutrition, Chicago, I11, 1975.Google Scholar

Copyright information

© Springer-Verlag Tokyo 1990

Authors and Affiliations

  • Khursheed N. Jeejeebhoy
    • 1
  1. 1.Division of GastroenterologyToronto General HospitalTorontoCanada

Personalised recommendations