A Unified Approach to the Description of High-Tc Oxides: Major Normal and Superconducting Parameters

  • S. A. Wolf
  • V. Z. Kresin


Using the Fermi liquid approach, one can evaluate the major normal and superconducting parameters of the cuprate superconductors. The anisotropy of both the electronic and crystal structure and the small values of the both the Fermi energy and the Fermi velocity are the key features of these materials. A complete description of experimentally observed behavior can be constructed using this approach. Also, an unconventional method of determining the strength of the electron-phonon coupling based on an analysis of heat capacity and neutron spectroscopy data has been developed. The results of this analysis lead to the conclusion that the cuprates are described by strong coupling, e.g. for La1.85Sr0.15CuO4 the coupling parameter λ is approximately 2. Nevertheless, the observed high Tc values require an additional non-phonon mechanism. In this paper we will summarize many of the results we have obtained and published previously plus present some new results.


Fermi Surface Fermi Energy Coherence Length Fermi Velocity Fermi Momentum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Z. Kresin and S. A. Wolf, Novel Superconductivity, S. A. Wolf and V. Z Kresin eds. ( Plenum, NY, 1987 ) p. 287CrossRefGoogle Scholar
  2. 2.
    V. Z. Kresin and S. A. Wolf, Sol. State. Comm. 63, 1141 (1987);ADSCrossRefGoogle Scholar
  3. 2.
    J. of Super. 1,143, (1988);Google Scholar
  4. 2.
    V. Z. Kresin, G. Deutscher and S. A. Wolf, J. of Super. 1, 327, (1988)ADSCrossRefGoogle Scholar
  5. 3.
    B. Veal et al., Physica C 156, 269 (1988);CrossRefGoogle Scholar
  6. 3.
    B. Veal et al., Physica C 156, 269 (1988);CrossRefGoogle Scholar
  7. 3.
    A. Arko et al., Phys. Rev. B.(in press);Google Scholar
  8. 3.
    Q. Huang et al (preprint)Google Scholar
  9. 4.
    G. Deutscher, ibid 1, p. 293, Physica C 153–155, 15, (1988)MathSciNetGoogle Scholar
  10. 5.
    V. Z. Kresin, Phys. Rev. B35, 3716, (1987),Google Scholar
  11. 5.
    ibid 1, p.309, V. Z. Kresin and H. Morowitz, ibid 1, p 445, Phys. Rev B37, 7854, (1988);ADSCrossRefGoogle Scholar
  12. 5.
    J. Opt. Soc.Am. B6, 490 (1989)Google Scholar
  13. 6.
    V.Z. Kresin and S.A. Wolf, Physica C 158, 76 (1989)ADSCrossRefGoogle Scholar
  14. 7.
    L. Landau and E. Lifshitz, Quantum Mechanics,, ( Pergamon Press, Oxford, 1977 ), p. 163Google Scholar
  15. 8.
    N. Phillips et al., ibid 1, p. 739;Google Scholar
  16. 8.
    S. Tanaka, in High Temperature Superconductor, ed. by D. Gubser and M. Schluter, p. 5, MRS,Pittsburgh (1987)Google Scholar
  17. 9.
    V.Z. Kresin, Phys. Lett. A122, 434 (1987)CrossRefGoogle Scholar
  18. 9.
    V.Z. Kresin, Phys. Lett. A122, 434 (1987)CrossRefGoogle Scholar
  19. 10.
    I. Bozovic, Proc. of M2S (Stanford, July 1989) (in press)Google Scholar

Copyright information

© Springer Japan 1990

Authors and Affiliations

  • S. A. Wolf
    • 1
  • V. Z. Kresin
    • 2
  1. 1.Naval Research LaboratoryWashingtonUSA
  2. 2.Lawrence Berkeley LaboratoryUC Berkeley, BerkeleyUSA

Personalised recommendations