Skip to main content

Superconductivity in Bi2Sr2Ca1-xCexCu2Oy

  • Conference paper
Advances in Superconductivity II

Abstract

Effect of Ce-ions substitution for Ca ions in the superconducting Bi2Sr2CaCu2Oy has been investigated. Up to the Ce concentration x=0.5, the powder x-ray diffraction exhibits a pattern similar to the non-substituted one. The resistivity measurement shows that Tc slightly increases first with the substitution and then tends to decrease above x=0.05. Further, the system undergoes the metal-insulator transition around x=0.32. The Hall coefficients stay positive and increase with the substitution. These behaviors resemble to those observed for Bi2Sr2Ca1-x(Y or Tm)xCu2Oy, provided that Bi2Sr2Ca1-x- CexCu2Oy should correspond to Bi2Sr2Ca1-2xox(Y or Tm)2xCu2Oy on account of the difference of the formal valences of Ce4+ and Y3+ or Tm3+.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maeda H et al (1988) A New High-Tc Oxides Superconductor without a Rare Earth Element. Jpn.J.Appl.Phys. 27: L209–L210.

    Article  ADS  Google Scholar 

  2. Tarascon JM et al (1988) Crystal Substructure and Physical Properties of Superconducting Phase Bi4(Sr,Ca)6Cu4O16+x. Phys.Rev. B37: 9382–9389.

    Article  ADS  Google Scholar 

  3. Tamegai T et al (1988) Characterization of Non-Superconducting Cuprate Bi2Sr2YCu2O8. 5. Jpn.J.Appl.Phys. 27: L1074–L1076.

    Article  ADS  Google Scholar 

  4. Fukusima N. Niu H. Ando K. (1988) Electrical and Magnetic Properties in Bi2Sr2Ca1-xYxCu2O8+d. Jpn.J.Appl.Phys. 27: L1432–L1434.

    Article  ADS  Google Scholar 

  5. Yoshizaki R et al (1988) Superconducting and Magnetic Properties of Bi2Sr2Ca1-xYxCu2Oy (0<x<l). Physica C 152: 408–412.

    Google Scholar 

  6. Clayhold J et al. (1989) Approaching the Mott-Hubbard Insulator in the 85-K Superconductor Bi2(Sr,Ca)3Cu2O8+d by doping with Tm. Phys. Rev. B39: 7320–7323.

    Article  ADS  Google Scholar 

  7. Ishida (1988) Anomalous Tc Alteration of Quenched Bi2Sr2Ca1-xYxCu2Ox. Jpn.J.Appl.Phys. 27: L2327–L2329.

    Article  ADS  Google Scholar 

  8. Motoi Y. Ikeda Y. Uwe H. Sakudo T.(1989) Enhancement of Tc under Reducing Conditions on Bi2Sr2CaCu2Ox. Proc. of M2S-HTSC, Stanford (in press).

    Google Scholar 

  9. Takabatake T et al (1989) Hydrogen Intercalation in Some Superconducting Copper Oxides. Proc. of M2S-HTSC, Stanford (in press).

    Google Scholar 

  10. Nishida N et al (1989) Observation of Antiferromagnetic Ordering in Bi2Sr2YCu2Oy above Room Temperature by the μSR Method. Physica C 156: 625–628.

    Google Scholar 

  11. Fujita T. and Tornita T. (1989) Substitution Effect in Bi2Sr2CaCu2O8+d. Proc. of M2S-HTSC, Stanford (in press).

    Google Scholar 

  12. Onoda M et al (1988) Assignment of the the Powder x-Ray Diffraction Pattern of superconducting Bi2(Sr,Ca)3-xCu2Oy. Jpn.J.Appl.Phys. 27, L833–L836.

    Article  ADS  Google Scholar 

  13. Kondo J. Asai Y. Nagai S. (1988) The Madelung Energy in Copper-Oxide Based Ceramics. J.Phys.Soc.Jpn. 57: 4334–4342.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Japan

About this paper

Cite this paper

Han, TS., Sawa, A., Uwe, H., Sakudo, T. (1990). Superconductivity in Bi2Sr2Ca1-xCexCu2Oy . In: Ishiguro, T., Kajimura, K. (eds) Advances in Superconductivity II. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68117-5_44

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68117-5_44

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68119-9

  • Online ISBN: 978-4-431-68117-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics