Present Status of the Theory of High-Temperature Superconductivity

  • Elihu Abrahams
Conference paper


A critical introduction and review is given of theoretical activities connected with the physics of high-temperature superconductors. The topics discussed include: Pairing mechanisms, low-dimensional electron systems with strong correlations, properties of doped and disordered quantum antiferromagnets, model hamiltonians, flux phases, the quantum spin liquid, model wave functions, fractional statistics and superconductivity, theory of anomalous normal state properties.


Mott Insulator Resonate Valence Bond Model Wave Function Normal State Property Superconductive Pairing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.G. Bednorz and K.A. Müller (1986) Z. Phys. B64, 189.ADSCrossRefGoogle Scholar
  2. 2.
    C.M. Varma, P.B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A.E. Ruckenstein (1989) Phys. Rev. Lett. 63, 1996.ADSCrossRefGoogle Scholar
  3. 3.
    P.W. Anderson (1989) submitted to Nature.Google Scholar
  4. 4.
    J. Bardeen, L.N. Cooper and J.R. Schrieffer (1957) Phys. Rev. 108, 1175.MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    J. Hubbard (1963) Proc. Roy. Soc. A276, 238.ADSGoogle Scholar
  6. 6.
    For example, T. Hsu, J. Wheatley and P.W. Anderson (1988) Nature 333, 121.ADSGoogle Scholar
  7. 7.
    C.M. Varma, S. Schmitt-Rink and E. Abrahams (1987) Solid State Commun. 62, 681.ADSCrossRefGoogle Scholar
  8. 8.
    P.B. Littlewood, C.M. Varma and E. Abrahams (1989) Phys. Rev. Lett. 63, 2602.ADSCrossRefGoogle Scholar
  9. 9.
    P.W. Anderson (1959) Phys. Rev. 115, 2.MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    P.W. Anderson (1987) Science 235, 1196.ADSCrossRefGoogle Scholar
  11. 11.
    J.R. Schrieffer, X.G. Wen and S. Zhang (1989) Phys. Rev. B39, 11538Google Scholar
  12. 12.
    P. W. Anderson (1988) Frontiers and Borderlines in Many-body Physics; Varenna Lectures. North Holland. Amsterdam.Google Scholar
  13. 13.
    G. Kotliar (1988) Phys. Rev. B37, 3604; ADSGoogle Scholar
  14. 13.
    I. Affleck and J.B. Marston (1988) Phys. Rev. B37, 3774ADSGoogle Scholar
  15. 14.
    R. B. Laughlin (1988) Science 242, 525;ADSCrossRefGoogle Scholar
  16. 14.
    Y-H Chen, F. Wilczek, E. Witten, and B.I. Halperin (1989) Int. J. Mod. Phys. B3, 1001.MathSciNetADSGoogle Scholar
  17. 15.
    F. Wilczek (1982) Phys. Rev. Lett. 49, 957.Google Scholar
  18. 16.
    A.L. Fetter, C.B. Hanna and R.B. Laughlin, (1989) Phys. Rev. B39, 9679.ADSGoogle Scholar
  19. 17.
    Y. Kuroda and C.M. Varma (1989) submitted to Phys. Rev. Lett.Google Scholar
  20. 18.
    R.J. Cava et al. (1988) Nature 332, 814.ADSCrossRefGoogle Scholar
  21. 19.
    R.F. Kiefl, et al (1989) Phys. Rev. Lett. 63, 2136.ADSCrossRefGoogle Scholar
  22. 20.
    Y.J. Uemura et al (1987) Phys. Rev. Lett. 59, 1045.ADSCrossRefGoogle Scholar
  23. 21.
    B.I. Halperin, J. March-Russell and F. Wilczek (1989) Harvard preprint.Google Scholar
  24. 22.
    R.F. Kiefl, et al (1989) TRIUMF preprint;Google Scholar
  25. 22.
    P.L. Gammel, et al (1989) Bell Laboratories preprint.Google Scholar

Copyright information

© Springer Japan 1990

Authors and Affiliations

  • Elihu Abrahams
    • 1
  1. 1.Serin Physics LaboratoryRutgers UniversityPiscatawayUSA

Personalised recommendations