Advertisement

Why Is Meissner Effect Dependent on Field Intensity and Surface-to-Volume Ratio of Samples in Oxide Superconductors?

  • K. Kitazawa
  • O. Nakamura
  • T. Matsushita
  • Y. Tomioka
  • N. Motohira
  • M. Murakami
  • H. Takei
Conference paper

Abstract

The Meissner curves were measured systematically under a wide range of magnetic fields for Ba2YCu3Oy and Bi2Sr2CaCu2Oy in the forms of single- and poly-crystalline and powder specimens. The Meissner fraction was smaller for single crystals than for powders. The poly-crystalline specimens exhibited the Meissner fraction similar to the single crystals under a low field while they did similar to the powder under a high field. Roughly speaking, the Meissner fraction decreases with the field but in a complex manner. A model has been proposed to systematically explain the observed behaviors based on the temperature dependent pinning force exerted on the flux expulsion.

Keywords

Field Cool Flux Line Sintered Body Oxide Superconductor Meissner Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.G. Bednorz, M. Takashige and K.A. Muller, Europhys. Lett. 3 379 (1987).ADSCrossRefGoogle Scholar
  2. [2]
    S. Uchida, H. Takagi, K. Kitazawa, and S. Tanaka, Jpn. J. Appl. Phys. 26 1 (1987).ADSCrossRefGoogle Scholar
  3. [3]
    S.H. bloom, M.V. Kuric, Y.S. Yao, R.P. Guertin, D. Nichols, C. Jee, A. Kebede, J.E. Crow, T. Mihalisin, G.N. Myer and P. Shulottmann, “High-Temperature Superconductors”, Eds, M.B. Brodsky, R.C. Dynes, K. Kitazawa, H.L. Tuller, MRS (1988) p. 19Google Scholar
  4. [4]
    R.B. van Dover, R.J. Cava, B. Batlogg and E.A. Rietman, Phs. Rev. B 35 5337 (1987).ADSCrossRefGoogle Scholar
  5. [5]
    L. Krusin-Elbaun, A.P. Malozemoff, Y. Yeshurun, D.C. Cronemeyer and F.Holtzberg, Physica C153–155, 1469 (1988).Google Scholar
  6. [6]
    M. Motohira, K. Kuwahara, T. Hasegawa, K. Kishio, K. Kitazawa, Jpn. J. Cer. Soc. Int. Ed. in press.Google Scholar
  7. [7]
    A. Maeda, T. Yabe, H. Ikuta, Y. Nakayama, T. Wadaura, S. Okuda, T. Itoh, M. Izumi, K. Uchinokura, S. Uchida and S.Tanaka, 27 (1988) L661ADSCrossRefGoogle Scholar
  8. [8]
    A. Celani, R. Messi, N. Sparvieri, S. Pace, A. Saggese, C. Giovannella, L. Fruchter, C. Chappert and I.A. Campbell, J. de Physique, to be published.Google Scholar
  9. [9]
    C.P. Bean, Phys. Rev. Lett. 8 (1962) 250ADSMATHCrossRefGoogle Scholar
  10. [10]
    K. Kitazawa, T. Matsushita, Y. Tomioka, 0. Tamura, I. Tanaka and H. Kojima, Jpn. J. Appl. Phys., to be submitted.Google Scholar
  11. [11]
    M. Murakami, M. Morita, K. Doi, K. Miyamoto and H. Hamada, Jpn. J. Appl. Phys. 28 (1989) 399.ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 1990

Authors and Affiliations

  • K. Kitazawa
    • 1
  • O. Nakamura
    • 2
  • T. Matsushita
    • 3
  • Y. Tomioka
    • 1
  • N. Motohira
    • 1
  • M. Murakami
    • 4
  • H. Takei
    • 5
  1. 1.Department of Industrial ChemistryThe University of TokyoHongo, Tokyo, 113Japan
  2. 2.R & D LaboratoryToa Nenryo Kogyo Ltd.Iruma, Saitama, 354Japan
  3. 3.Department of ElectronicsKyushu UniversityHigashi-ku, Fukuoka, 812Japan
  4. 4.Superconductivity Research LaboratoryInternational Superconductivity Technology CenterKoto-ku, Tokyo, 135Japan
  5. 5.R&D LaboratoriesSumitomo Electric Industries, Ltd.Konohana-ku, Osaka 554Japan

Personalised recommendations