Biomechanics of Endoprostheses of the Hip and Adaptive Reactions of the Bone

  • Benno Kummer


Following the hypothesis of Pauwels [1–3], the bone adapts to its actual mechanical stress by densification and apposition of new material or by decalcification and resorption. Increasing stress stimulates bone formation; decreasing stress stimulates resorption. However, extreme magnitudes of stress may lead to paradoxical loss of bone substance. Implantation of an endoprosthesis changes the mechanical stress of the bone considerably. It must be expected, therefore, that the structure and distribution of the bone material will change remarkably. These changes can be visualized and quantified by the densitometry of X-ray pictures. For this purpose, 5-mm-thick cross-sectional slices were taken from anatomical specimens of femora with implanted endoprostheses. X-rays of these slices were analyzed by computer-aided densitometry. Bone condensation was found at the sites of stress concentration. More transparent areas, however, could be attributed to either extremely low or extremely high stresses. This loss of bone material is responsible for the loosening of endoprostheses. These phenomena are demonstrated on examples of cementless and cemented femoral endoprostheses.


Muscle Force Bone Material Adaptive Reaction Muscular Force Abductor Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pauwels F (1973) Kurzer Überblick über die mechanische Beanspruchung des Knochens und ihre Bedeutung für die funktionelle Anpassung. Z Orthop 111: 681PubMedGoogle Scholar
  2. 2.
    Pauwels F (1976) Biomechanics of the normal and diseased hip. Springer, Berlin HeidelbergGoogle Scholar
  3. 3.
    Pauwels F (1980) Biomechanics of the locomotor apparatus. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  4. 4.
    Roux W (1895) Gesammelte Abhandlungen über Entwicklungsmechanik der Organismen, 1–2. Engelmann, LeipzigCrossRefGoogle Scholar
  5. 5.
    Kummer B (1972) Biomechanics of bone: mechanical properties, functional structure, functional adaptation. In: Fung YC, Perrone N, Anliker M (eds) Biomechanics: its foundations and objectives. Prentice Hall, Englewood Cliffs, pp 237–271Google Scholar
  6. 6.
    Kummer B (1975) Biomechanical aspects of the total hip prosthesis. San Diego Biomedical symposiumGoogle Scholar
  7. 7.
    Kummer B (1984) Die Beanspruchung des Femur durch implantierte Endoprothesen. In: Rahmanzahdeh, Faensen F (eds) Hüftgelenksendoprothetik, herausgeg. Springer, Berlin, pp 45–53CrossRefGoogle Scholar
  8. 8.
    Kummer B (1985) Kraftfluβ Prothese — Femur: Anpassugs- und Überlastungsreaktionen des Knochens. In: Maaz B, Menge M (eds) Aktueller Stand der zementfreien Hüftendoprothetik, Symposion, 1985, Düsseldorf. Thieme, StuttgartGoogle Scholar
  9. 9.
    Kummer B (1986) Zur Beanspruchung der normalen Hüftgelenkspfanne und des Implantatlagers bei zementierter Gelenksendoprothese. 8th München Symposion experimenteile, Orthopädie. Thieme, StuttgartGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1989

Authors and Affiliations

  • Benno Kummer
    • 1
  1. 1.Institute of AnatomyUniversity of CologneCologneFederal Republic of Germany

Personalised recommendations