Skip to main content

Computational Geometry: Recent Developments

  • Conference paper

Abstract

Recent developments in the field of computational geometry are discussed with emphasis on those problems most relevant to computer graphics. In particular we consider convex hulls, triangulations of polygons and point sets, finding the CSG representation of a simple polygon, polygonal approximations of a curve, computing geodesic and visibility properties of polygons and sets of points inside polygons, movable separability of polygons and local spatial planning, visibility questions concerning polyhedral terrains, finding minimal spanning covers of sets and various problems that arize in computational morphology including polygon decomposition and detecting symmetry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P. and Shark, S., “Red-blue intersection detection algorithms, with applications to motion planning and collision detection,” Proc. 4th ACM Symposium on Computational Geometry, 1988, pp. 70–80.

    Google Scholar 

  2. Akl, S. G. and Toussaint, G. T., “Efficient convex hull algorithms for pattern recognition applications,” Proc. Fourth International Joint Conf. on Pattern Recognition, Kyoto, Japan, 1978.

    Google Scholar 

  3. Akl, S. G. and Toussaint, G. T., “An improved algorithm to check for polygon similarity,” Information Processing Letters, vol. 7, 1978, pp. 127–128.

    Article  MATH  MathSciNet  Google Scholar 

  4. Asano, T. and Toussaint, G. T., “Computing the geodesic center of a simple polygon,” Technical Report SOCS-85.32, McGill University, 1985.

    Google Scholar 

  5. Asano, T. and Toussaint, G. T., “Computing the geodesic center of a simple polygon,” in Perspectives in Computing: Discrete Algorithms and Complexity, Proc. of Japan-US Joint Seminar, D. S. Johnson, A. Nozaki, T. Nishizeki, H. Willis, eds., June 1986, pp. 65–79.

    Google Scholar 

  6. Avis, A. and Toussaint, G. T., “An optimal algorithm for determining the visibility of a polygon from an edge,” IEEE Transactions on Computers, vol. C-30, No. 12, December 1981, pp.910–914.

    Article  MathSciNet  Google Scholar 

  7. Avis, D. and Wenger, R., “Algorithms for line stabbers in space,” Proc. 3rd ACM Symposium on Computational Geometry, 1987, pp.300–307.

    Google Scholar 

  8. Avis, D. and Wenger, R., “Polyhedral line transversals in space,” Discrete and Computational Geometry, 1989.

    Google Scholar 

  9. Bhattacharya, B. K. and ElGindy, H., “A new linear convex hull algorithm for simple polygons,” IEEE Transactions on Information Theory, vol. IT-30, No. 1, January 1984, pp. 85–88.

    Article  Google Scholar 

  10. Bhattacharya, B. K., Kirkpatrick, D. G., and Toussaint, G. T., “Determining sector visibility of a polygon,” manuscript in preparation.

    Google Scholar 

  11. Bhattacharya, B. K. and Toussaint, G. T., “Time-and-storage-efficient implementation of an optimal planar convex hull algorithm,” Image and Vision Computing, vol. 1, no. 3, August 1983, pp. 140–144.

    Article  Google Scholar 

  12. Bhattacharya, B. K. and Toussaint, G. T., “Computing minimal sets of external visibility,” Tech. Rept. CCS/LCCR TR 88–29, Simon Fraser University, Burnaby, B.C., Canada.

    Google Scholar 

  13. Bhattacharya, B. K. and Toussaint, G. T., “Computing minimal spanning covers of sets,” manuscript in preparation.

    Google Scholar 

  14. Burrough, P. A., Principles of Geographical Information Systems for Land Resources Assessment, Clarendon Press, Oxford, 1986.

    Google Scholar 

  15. Chhajed, D. and Chandru, V., “Rectilinear hull, efficient sets, and convex hull: relationship and algorithms,” RM. 88–23, School of Industrial Engineering, Purdue University, 1988.

    Google Scholar 

  16. Chazelle, B., “A theorem on polygon cutting with applications,” Proc. 23rd IEEE Symposium on Foundations of Computer Science, Chicago, November 1982.

    Google Scholar 

  17. Chazelle, B. and Incerpi, J., “Triangulation and shape complexity,” ACM Transactions on Graphics, vol. 3, 1984, pp.135–152.

    Article  MATH  Google Scholar 

  18. Culberson, J. C. and Reckhow, R. A., “Covering polygons is hard,” Proc. 29th Symposium on Foundations of Computer Science, October 1988.

    Google Scholar 

  19. Cole, R. and Shark, M., “Visibility problems for polyhedral terrains,” Journal of Symbolic Computation, in press.

    Google Scholar 

  20. Devroye, L., “Expected time analysis of algorithms in computational geometry,” in Computational Geometry, ed., G. T. Toussaint, North-Holland, 1985, pp. 135–151.

    Google Scholar 

  21. DeFloriani, L., Falcidieno, B., Pienovi, C, Allen, D., and Nagy, G., “A visibility-based model for terrain features,” Proc. Int. Symp. on Spatial Data Handling, Seattle, July 1986.

    Google Scholar 

  22. Dobkin, D., Guibas, L., Hershberger, J., and Snoeyink, J., “An efficient algorithm for finding the CSG representation of a simple polygon,” Proc. SIGGRAPH’88, Atlanta, August 1–5,1988, pp. 31–40.

    Google Scholar 

  23. Dean, J. A., Lingas, A., and Sack, J.-R., “Recognizing polygons, or how to spy,” The Visual Computer, vol. 3, 1988, pp. 344–355.

    Article  MATH  Google Scholar 

  24. Djidjev, H. N., Lingas, A., and Sack, J.-R., “An O(n log n) algorithm for computing a link center in a simple polygon,” Tech. Rept. SCS-TR-148, July 1988.

    Google Scholar 

  25. Diaz, M. and O’Rourke, J., “Algorithms for computing the center of area of a convex polygon,” Tech. Rept. 88–26, Johns Hopkins University.

    Google Scholar 

  26. Dobkin, D. and Silver, D., “Recipes for geometry & numerical analysis — Part I: An empirical study,” Proc. 4th Annual Symposium on Computational Geometry, Urbana, June 1988, pp. 93–105.

    Google Scholar 

  27. Devroye, L. and Toussaint, G. T., “A note on linear expected time algorithms for finding convex hulls,” Computing, vol. 26, pp. 361–366.

    Google Scholar 

  28. Dwyer, R. A., “Average-case analysis of algorithms for convex hulls and Voronoi diagrams,” Ph.D. thesis, Carnegie-Mellon University, 1988.

    Google Scholar 

  29. Dwyer, R. A., “On the convex hull of random points in a polygon,” Journal of Applied Probability, vol. 25, No. 4, 1988.

    Google Scholar 

  30. Dyer, M. E., “On a multidimensional search technique and its applications to the Euclidean one-center problem,” SIAM Journal of Computing, Vol. 15, 1986, pp. 725–738.

    Article  MATH  MathSciNet  Google Scholar 

  31. Eades, P., “Symmetry finding algorithms,” in Computational Morphology, ed., G. T. Toussaint, North-Holland, 1988, pp. 41–51.

    Google Scholar 

  32. ElGindy, H., Avis, D. and Toussaint, G. T., “Applications of a two-dimensional hidden-line algorithm to other geometric problems,” Computing, vol. 31, 1983, pp. 191–202.

    Article  MathSciNet  Google Scholar 

  33. Edelsbrunner, H., Algorithms in Combinatorial Geometry, Springer-Verlag, 1987.

    MATH  Google Scholar 

  34. ElGindy, H. A., “A linear algorithm for triangulating weakly externally visible polygons,” Tech. Report MS-CIS-86–75, University of Pennsylvania, September 1985.

    Google Scholar 

  35. Edelsbrunner, H. and Mucke, E., “Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms,” Proc. 4th Annual Symposium on Computational Geometry, Urbana, Illinois, June 1988, pp. 118–133.

    Google Scholar 

  36. ElGindy, H. A. and Toussaint, G. T., “Efficient algorithms for inserting and deleting edges from triangulations,” Proc. International Conference on Foundations of Data Organization, Kyoto, Japan, May 22–24, 1985.

    Google Scholar 

  37. ElGindy, H. and Toussaint, G. T., “On triangulating palm polygons in linear time,” Proc. Computer Graphics International ’88, Geneva, May 24–27, 1988.

    Google Scholar 

  38. ElGindy, H. and Toussaint, G. T., “On geodesic properties of polygons relevant to linear time triangulation,” The Visual Computer, in press.

    Google Scholar 

  39. ElGindy, H. and Toussaint, G. T., “Computing link-distance properties inside a simple polygon,” manuscript in preparation.

    Google Scholar 

  40. Franklin, W. Randolph and Akman, Varol, “Shortest paths between source and goal points located on/around a convex polyhedron,” Proc. Twenty-Second Annual Allerton Conference, Monticello, Illinois, October 1984, pp. 103–112.

    Google Scholar 

  41. Fournier, A. and Montuno, D. Y., “Triangulating simple polygons and equivalent problems,” ACM Transactions on Graphics, vol. 3, April 1984, pp. 153–174.

    Article  MATH  Google Scholar 

  42. Feng, H-Y. F. and Pavlidis, T., “Decomposition of polygons into simpler components: feature generation for syntactic pattern recognition,” IEEE Transactions on Computers, vol. C-24, June 1975, pp.636–650.

    Article  MathSciNet  Google Scholar 

  43. Ghosh, S. K., “A few applications of the set-visibility algorithm,” Tech. Rept CS-TR-1797, University of Maryland, March 1987.

    Google Scholar 

  44. Guibas, L., and Herschberger, J., “Optimal shortest path queries in a simple polygon,” Proc. Third Annual ACM Symposium on Computational Geometry, University of Waterloo, June 1987, pp. 50–63.

    Google Scholar 

  45. Guibas, L., Hershberger, J., Leven, D., Sharir, M., and Tarjan, R. E., “Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons,” Algorithmica, vol. 2, 1987, pp. 209–234.

    Article  MATH  MathSciNet  Google Scholar 

  46. Garey, M. R., Johnson, D. S., Preparata, F. P. and Tarjan, R. E., “Triangulating a simple polygon,” Information Processing Letters, vol. 7, 1978, pp. 175–179.

    Article  MATH  MathSciNet  Google Scholar 

  47. Golin, M. and Sedgewick, R., “Analysis of a simple yet efficient convex hull algorithm,” Proc. 4th Annual Symposium on Computational Geometry, Urbana, Illinois, June 1988, pp. 153–163.

    Google Scholar 

  48. Graham, R. L. and Yao, F. F., “Finding the convex hull of a simple polygon,” Journal of Algorithms, vol. 4, 1983, pp. 324–331.

    Article  MATH  MathSciNet  Google Scholar 

  49. Greene, D. H. and Yao, F. F., “Finite-resolution computational geometry,” Proc. 27th IEEE Symposium on Foundations of Computer Science, Toronto, October 1986, pp. 143–152.

    Google Scholar 

  50. Hertel, S. and Mehlhorn, K., “Fast triangulation of simple polygons,” Proc. FCT, LNCS 158,1983, pp.207–215.

    MathSciNet  Google Scholar 

  51. Hoffmann, C. M., Hopcroft, J. E., and Karasick, M. S., “Towards implementing robust geometric computations,” Proc. 4th Annual Symposium on Computational Geometry, Urbana, Illinois, June 1988, pp. 106–117.

    Google Scholar 

  52. Houle, M. and Maciel, A., “Finding the widest empty corridor through a set of points,” in Snapshots of Computational and Discrete Geometry, G. T. Toussaint, ed., Tech. Report SOCS-88.11, Computational Geometry Laboratory, McGill University, June 1988, pp. 201–214.

    Google Scholar 

  53. Ho, W.-C., “Decomposition of a polygon into triangles,” The Mathematical Gazette, vol. 59, 1975, pp. 132–134.

    Article  Google Scholar 

  54. Hopcroft, J. E. and Tarjan, R. E., “A V log V algorithm for isomorphism of unconnected planar graphs”, Journal of Computer and System Sciences, vol. 7, 1973, pp. 323–331.

    Article  MATH  MathSciNet  Google Scholar 

  55. Horn, A. and Valentine, F. A., “Some properties of L-sets in the plane,” Duke Mathematics Journal, vol. 16, 1949, pp. 131–140.

    Article  MATH  MathSciNet  Google Scholar 

  56. Imai, H. and Iri, M., “Computational geometric methods for polygonal approximations of a curve,” Computer Vision, Graphics, and Image Processing, vol. 36, 1986, pp. 31–41.

    Article  Google Scholar 

  57. Imai, H. and In, M., “Polygonal approximations of a curve — Formulations and algorithms,” in Computational Morphology, ed., G. T. Toussaint, North-Holland, 1988, pp.71–86.

    Google Scholar 

  58. Karasick, M., “On the representation and manipulation of rigid solids,” Ph.D. thesis, School of Computer Science, McGill University, Montreal, 1988.

    Google Scholar 

  59. Ke, Y., “Detecting the weak visibility of a simple polygon and related problems,” The Johns Hopkins University, manuscript, March 1988.

    Google Scholar 

  60. Ke, Y., “An efficient algorithm for link distance problems inside a simple polygon,” Johns Hopkins Tech. Rept. 87/27, June 1988.

    Google Scholar 

  61. Kirkpatrick, D. G. and Seidel, R., “The ultimate planar convex hull algorithm?” SIAM Journal on Computing, vol. 15, No. 1, February 1986, pp. 287–299.

    Article  MATH  MathSciNet  Google Scholar 

  62. Lee, S. H. and Chwa, K. Y., “A new triangulation linear class of simple polygons,” International Journal of Computer Mathematics, vol. 22, 1987, pp. 135–147

    Article  MATH  Google Scholar 

  63. Lee, D. T., “On finding the convex hull of a simple polygon,” International Journal of Computer & Information Science, vol. 12, 1983, pp. 87–98.

    Article  MATH  Google Scholar 

  64. Lennes, N. J., “Theorems on the simple finite polygon and polyhedron,” American Journal of Mathematics, vol. 33, 1911, pp.37–62.

    Article  MATH  MathSciNet  Google Scholar 

  65. Lantuejoul, C, and Maisonneuve, F., “Geodesic methods in quantitative image analysis,” Pattern Recognition, Vol. 17, 1984, pp. 177–187.

    Article  MATH  MathSciNet  Google Scholar 

  66. Leou, J.-J. and Tsai, W.-H., “Automatic rotational symmetry determination for shape analysis,” Pattern Recognition, vol. 20, No. 6, 1987, pp. 571–582.

    Article  Google Scholar 

  67. Lee, D. T., and Preparata, F. P., “Euclidean shortest paths in the presence of rectilinear barriers,” Networks, Vol. 14, No. 3., 1984, pp. 393–410.

    Article  MATH  MathSciNet  Google Scholar 

  68. Lenhart, W., Pollack, R., Sack, J., Seidel, R., Sharir, M., Suri, S., Toussaint, G., Whitesides, S., and Yap, C, “Computing the link center of a simple polygon,” Proceedings of the Third Annual Symposium on Computational Geometry, Waterloo, Ontario, Canada, June 8–10,1987, pp.1–10.

    Google Scholar 

  69. McCallum, D. and Avis, D., “A linear algorithm for finding the convex hull of a simple polygon,” Information Processing Letters, vol. 9, 1979, pp. 201–206.

    Article  MATH  MathSciNet  Google Scholar 

  70. Meisters, G. H., “Polygons have ears,” American Mathematical Monthly, June/July 1975, pp.648–651

    Google Scholar 

  71. Megiddo, N., “Linear-time algorithms for linear programming in R3 and related problems,” SIAM Journal of Computing, Vol. 12, 1983, pp. 759–776.

    Article  MATH  MathSciNet  Google Scholar 

  72. Mehlhorn, K., Multidimensional Searching and Computational Geometry, Springer-Verlag, 1984.

    Google Scholar 

  73. Melkman, A. A., “On-line construction of the convex hull of a simple polyline,” Information Processing Letters, vol. 25, April 1987, pp. 11–12.

    Article  MATH  MathSciNet  Google Scholar 

  74. Milenkovic, V., “Verifiable implementations of geometric algorithms using finite precision arithmetic,” Tech. Rept. CMU-CS-88–168, Carnegie Mellon University, July 1988.

    Google Scholar 

  75. Mount, D. M., “On finding shortest paths on convex polyhedra,” Technical Report, Computer Science Dept., University of Maryland, October 1984.

    Google Scholar 

  76. Melkman, A. A. and O’Rourke, J., “On polygonal chain approximation,” in Computational Morphology, ed., G. T. Toussaint, North-Holland, 1988, pp.87–95.

    Google Scholar 

  77. Mouawad, N. and Shermer, T., “The Superman problem,” in Snapshots of Computational and Discrete Geometry, G. T. Toussaint, ed., Tech. Report SOCS-88.11, Computational Geometry Laboratory, McGill University, June 1988, pp. 215–232.

    Google Scholar 

  78. McQueen, M. M. and Toussaint, G. T., “On the ultimate convex hull algorithm in practice,” Pattern Recognition Letters, vol. 3, January 1985, pp. 29–34.

    Article  Google Scholar 

  79. Maddila, S, and Yap, C, “Moving a polygon around a corner in a polygon,” Proc. 2nd ACM Symposium on Computational Geometry, 1986, pp. 187–192.

    Google Scholar 

  80. Nurmi, O. and Sack, J.-R., “Separating a polyhedron by one translation from a set of obstacles,” Proc. Workshop on Graph Theory, Amsterdam, 1988.

    Google Scholar 

  81. Nussbaum, D. and Sack, J.-R., “Translation separability of polyhedra,” First Canadian Conference on Computational Geometry, Montreal, August 1989.

    Google Scholar 

  82. O’Rourke, J., Art Gallery Theorems and Algorithms, Oxford University Press, 1987.

    MATH  Google Scholar 

  83. O’Rourke, J., “Computational geometry,” in Annual Review of Computer Science, ed., J. F. Traub, vol. 3, 1988, pp. 389–411.

    Google Scholar 

  84. Ottmann, T., Soisalon-Soininen, E., and Wood, D., “On the definition and computation of rectilinear convex hulls,” Information Sciences, vol. 33, 1984, pp. 167–171.

    Article  MathSciNet  Google Scholar 

  85. Ottmann, T., Thiemt, G., and Ulrich, C, “Numerical stability of geometric algorithms,” Proc. 3rd Symposium on Computational Geometry, Waterloo, June 1987, pp. 119–125.

    Google Scholar 

  86. Pesant, G., “Galleries require more sleepy watchmen: K-guarding simple polygons,” in Snapshots of Computational and Discrete Geometry, G. T. Toussaint, ed., Tech. Report SOCS-88.11, Computational Geometry Laboratory, McGill University, June 1988, pp. 145–166.

    Google Scholar 

  87. Peshkin, M. A., and Sanderson, A. C., “Reachable grasps on a polygon: the convex rope algorithm,” Teck. Rept. CMU-RI-TR-85-6, Carnegie-Mellon University, 1985, also IEEE Transactions on Robotics and Automation, in press.

    Google Scholar 

  88. Preparata, F. and Muller, D., “Finding the intersection of n halfspaces in time O(n log n) time,” Journal of Theoretical Computer Science, vol. 8., 1979, pp. 44–55.

    Article  MathSciNet  Google Scholar 

  89. Preparata, F., ed., Computational Geometry, JAI Press, 1983.

    Google Scholar 

  90. Pollack, R., Sharir, M., and Sifrony, S., “Separating two simple polygons by a sequence of translations,” Journal of Discrete and Computational Geometry, Vol. 3, 1988, pp. 123–136.

    Article  MATH  MathSciNet  Google Scholar 

  91. Pujari, A. K., “Separability of unimodal polygons,” Pattern Recognition Letters, vol. 7, 1988, pp. 163–165.

    Article  MATH  Google Scholar 

  92. Radke, J. D., “On the shape of a set of points,” Computational Morphology, Toussaint, G. T., ed., North-Holland, 1988, pp. 105–136.

    Google Scholar 

  93. Requicha, A., “Representations for rigid solids: theory, methods, and systems,” ACM Computing Surveys, vol. 12, 1980, pp. 437–464.

    Article  Google Scholar 

  94. Robert, J.-M., “Stabbing hyperspheres by a hyperplane,” in Snapshots of Computational and Discrete Geometry, G. T. Toussaint, ed., Tech. Rep. SOCS-88.11, Computational Geometry Lab., McGill University, June 1988, pp. 181–188.

    Google Scholar 

  95. Reif, J. and Storer, J., “Minimizing turns for discrete movement in the interior of a polygon,” Tech. Rept., Harvard University, December 1985.

    Google Scholar 

  96. Reif, J. and Sen, S., “An efficient output-sensitive hidden-surface removal algorithm and its parallelization,” Proc. 4th ACM Symposium on Computational Geometry, 1988, pp. 193–200.

    Google Scholar 

  97. Rival, I. and Urrutia, J., “Representing orders on the plane by translating convex figures,” Order, vol. 4, 1988, pp. 319–339.

    Article  MATH  MathSciNet  Google Scholar 

  98. Rival, I. and Urrutia, J., “Order models for motion in three-space,” First Canadian Conference on Computational Geometry, Montreal, August 1989.

    Google Scholar 

  99. Sklansky, J., Chazin, R. L., and Hansen, B. J., “Minimum perimeter polygons of digitized silhouettes,” IEEE Transactions on Computers, Vol. C-21, March 1972, pp. 260–268.

    Article  MathSciNet  Google Scholar 

  100. Senechal, M. and Fleck, G., eds., Shaping Space: A Polyhedral Approach, Birkhauser, 1988.

    MATH  Google Scholar 

  101. Suss, W., Gercke, H., and Berger, K. H., “Differential geometry of curves and surfaces,” in Fundamentals of Mathematics: Vol. II, Geometry, H. Behnke, et al., eds., MIT Press, 1983, pp. 534–571.

    Google Scholar 

  102. Shamos, M. L, Computational Geometry, Ph. D. thesis, Yale University, 1978.

    Google Scholar 

  103. Sharir, M., “The shortest watchtower and related problems for polyhedral terrains,” Information Processing Letters, in press.

    Google Scholar 

  104. Shermer, T., “Link guarding simple polygons,” in Snapshots of Computational and Discrete Geometry, G. T. Toussaint, ed., Tech. Report SOCS-88.11, Computational Geometry Laboratory, McGill University, June 1988, pp. 79–88.

    Google Scholar 

  105. Shermer, T., “Computing bushy and thin triangulations,” in Snapshots of Computational and Discrete Geometry, G. T. Toussaint, ed., Tech. Report SOCS-88.11, Computational Geometry Laboratory, McGill University, June 1988, pp. 119–134.

    Google Scholar 

  106. Shermer, T., “Convex cover is NP-hard,” Technical Note, School of Computer Science, McGill University, October 1988.

    Google Scholar 

  107. Shermer, T., “Hiding people in polygons,” Computing, in press.

    Google Scholar 

  108. Sugihara, K. and Iri, M., “Construction of the Voronoi diagram for over 105 generators in single-precision arithmetic,” First Canadian Conference on Computational Geometry, Montreal, August 21–25, 1989.

    Google Scholar 

  109. Sharir, M., and Schorr, A., “On shortest paths in polyhedral spaces,” Proc. Sixteenth Annual ACM Symposium in the Theory of Computing, Washington, 1984, pp. 144–153.

    Google Scholar 

  110. Sack, J.-R. and Suri, S., “An optimal algorithm for detecting weak visibility of a polygon,” Tech. Rept. SCS-TR-114, Carleton University, Ottawa, Canada, Dec. 1986.

    Google Scholar 

  111. Schwartz, J. T., Sharir, M., and Hopcroft, J., Planning, Geometry, and the Complexity of Robot Motion, Norwood, 1987.

    Google Scholar 

  112. Shermer, T. and Toussaint, G. T., “Characterizations of convex and star-shaped polygons,” in Snapshots of Computational and Discrete Geometry, G. Toussaint, editor, Tech. Rept. SOCS-88.11, School of Computer Science, McGill University, June 1988.

    Google Scholar 

  113. Shermer, T. and Toussaint, G. T., “Anthropomorphic polygons can be recognized in linear time,” in Snapshots of Computational and Discrete Geometry, G. T. Toussaint, ed., Tech. Report SOCS-88.11, Computational Geometry Laboratory, McGill University, June 1988, pp. 7–14.

    Google Scholar 

  114. Shermer, T. and Toussaint, G. T., “Characterizations of star-shaped polygonal sets,” manuscript in preparation.

    Google Scholar 

  115. Sugihara, K., “An O(n log n) algorithm for determining the congruity of polyhedra,” Journal of Computer and Systems Sciences, vol. 29., 1984, pp. 36–47.

    Article  MATH  MathSciNet  Google Scholar 

  116. Sugihara, K., “An approach to error-free solid modelling,” Notes, Institute for Mathematics and its Applications, University of Minnesota, 1987.

    Google Scholar 

  117. Suri, S., “Minimum link paths in polygons and related problems,” Ph.D. thesis, The Johns Hopkins University, August 1987.

    Google Scholar 

  118. Suri, S., “The all-geodesic-furthest neighbors problem for simple polygons,” Proc. Third Annual ACM Symposium on Computational Geometry, University of Waterloo, June 1987, pp. 64–75.

    Chapter  Google Scholar 

  119. Schoone, A. A. and van Leeuwen, J., “Triangulating a star-shaped polygon,” Tech. Report, RUV-CS-80–3, University of Utrecht, April 1980.

    Google Scholar 

  120. Schaffer, A. A. and Van Wyk, C. J., “Convex hulls of piece-wise smooth Jordan curves,” Journal of Algorithms, vol. 8, 1987, pp. 66–94.

    Article  MathSciNet  Google Scholar 

  121. Schwartz, J. T. and Yap, C. K., Algorithmic and Geometric Aspects of Robotics, Erlbaum, 1987.

    MATH  Google Scholar 

  122. Toussaint, G. T. and Avis, D., “On a convex hull algorithm for polygons and its application to triangulation problems,” Pattern Recognition, vol. 15, No. 1, 1982, pp.23–29.

    Article  MathSciNet  Google Scholar 

  123. Teichman, M., “Shoving a table into a corner,” in Snapshots of Computational and Discrete Geometry, G. T. Toussaint, ed., Tech. Report SOCS-88.11, Computational Geometry Laboratory, McGill University, June 1988, pp. 99–118.

    Google Scholar 

  124. Toussaint, G. T., “A new linear algorithm for triangulating monotone polygons,” Pattern Recognition Letters, vol. 2, March 1984, pp.

    Google Scholar 

  125. Toussaint, G. T., ed., Computational Geometry, North-Holland, 1985.

    MATH  Google Scholar 

  126. Toussaint, G. T., “A historical note on convex hull finding algorithms,” Pattern Recognition Letters, vol. 3, January 1985, pp. 21–28.

    Article  Google Scholar 

  127. Toussaint, G. T., “On the complexity of approximating polygonal curves in the plane,” Proc. IASTED International Symposium on Robotics and Automation, Lugano, Switzerland, 1985.

    Google Scholar 

  128. Toussaint, G. T., “Shortest path solves translation separability of polygons,” Tech. Rept. SOCS-85.27, School of Computer Science, McGill University, 1985.

    Google Scholar 

  129. Toussaint, G. T., “Movable separability of sets,” in Computational Geometry, Toussaint, G. T., ed., North-Holland, 1985.

    Google Scholar 

  130. Toussaint, G. T., “New results in computational geometry relevant to pattern recognition in practice,” in Pattern Recognition in Practice II, E. S. Gelsema and L. N. Kanal, Editors, North-Holland, 1986, pp.135–146.

    Google Scholar 

  131. Toussaint, G. T., “Shortest path solves edge-to-edge visibility in a polygon,” Pattern Recognition Letters, Vol. 4, July 1986, pp. 165–170.

    Article  MATH  Google Scholar 

  132. Toussaint, G. T., “A linear-time algorithm for solving the strong hidden-line problem in a simple polygon,” Pattern Recognition Letters, 1987.

    Google Scholar 

  133. Toussaint, G. T., ed., Computational Morphology, North-Holland, 1988.

    MATH  Google Scholar 

  134. Toussaint, G. T., “Computing geodesic properties inside a simple polygon,” Technical Report CSS/LCCR TR 88–23, Centre for Systems Science, Simon Fraser University, Burnaby, B.C. Canada, October 1988.

    Google Scholar 

  135. Toussaint, G. T., ed., Snapshots of Computational and Discrete Geometry, Tech. Report SOCS-88.11, Computational Geometry Laboratory, McGill University, June 1988.

    Google Scholar 

  136. Toussaint, G. T., “An output-complexity-sensitive polygon triangulation algorithm,” in Snapshots of Computational and Discrete Geometry, G. T. Toussaint, ed., Tech. Report SOCS-88.11, Computational Geometry Laboratory, McGill University, June 1988, pp. 55–68.

    Google Scholar 

  137. Toussaint, G. T., “A graph-theoretical primal sketch,” in Computational Morphology, Toussaint, G. T., ed., North-Holland, 1988.

    Google Scholar 

  138. Toussaint, G. T., “Detecting weak external visibility of a polygon from a line,” in Snapshots of Computational and Discrete Geometry, G. T. Toussaint, ed., Tech. Report SOCS-88.11, Computational Geometry Laboratory, McGill University, June 1988, pp. 189–200.

    Google Scholar 

  139. Toussaint, G. T., “Anthropomorphic polygons,” American Mathematical Monthly, in press.

    Google Scholar 

  140. Toussaint, G. T., “On separating two simple polygons by a single translation,” Discrete and Computational Geometry, 1989.

    Google Scholar 

  141. Tarjan, R. E. and Van Wyk, C. J., “An O(n log log n)-time algorithm for triangulating simple polygons,” SIAM Journal on Computing, 1988.

    Google Scholar 

  142. Wenger, R., “Stabbing and separation,” Ph.D. thesis, School of Computer Science, McGill University, February 1988.

    Google Scholar 

  143. Woo, T. C. and Shin, S. Y., “A linear time algorithm for triangulating a point-visible polygon,” ACM Transactions on Graphics, vol. 4, January 1985, pp.60–70.

    MATH  Google Scholar 

  144. Yap, C. K., “An O(n log n) algorithm for the Voronoi diagram of a set of simple curve segments,” Tech. Rept. 161, Courant Institute of Mathematical Sciences, New York University, 1984.

    Google Scholar 

  145. Yap, C. K., “How to move a chair through a door,” Tech. Rept., Courant Institute of Mathematical Sciences, New York University, 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Tokyo

About this paper

Cite this paper

Toussaint, G.T. (1989). Computational Geometry: Recent Developments. In: Earnshaw, R.A., Wyvill, B. (eds) New Advances in Computer Graphics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68093-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68093-2_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68095-6

  • Online ISBN: 978-4-431-68093-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics