Advertisement

YBa2Cu3O7-δ Superconductor-Insulator Composites — The Percolation Limit and Device Potential

  • K. N. R. Taylor
  • D. N. Matthews
  • G. J. Russell
  • M. Shepherd
  • G. Alvarez
  • K. Sealey
Conference paper

Abstract

The superconducting properties of composites formed in the series YBa2Cu3Ox-Y2BaCuOy have been extensively investigated. These materials, formed along a tie-line in the phase diagram are intrinsically two-phase, with the ratios of the two phases established by the working composition.

Since the (211) compound is intrinsically an insulator, by varying the composition we have been able to reach the percolation limit and establish the behaviour of both the inter-and intra-granular behaviour independently. The dependence of the V-i characteristics have been used to establish a number of devices and the tunnelling spectroscopy observations show clear evidence for an unusual series of transitions at high voltages.

Keywords

Critical Current Density Resistive Transition Convergence Point Normal State Resistivity Full Connectivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.J. Gallagher. J. Appl. Phys. 63 4216 198Google Scholar
  2. 2.
    P. Chaudhari, R.H. Koch, R.B. Laibowitz, T.R. McGuire and R.J. Gambino Phys. Rev. Letts. 58 2684 1987ADSCrossRefGoogle Scholar
  3. 3.
    I. Kostadinov, M. Mateev, I.V. Petrov, P. Vassilev and J. Tihov, Physica C. 153–155 320 1988.CrossRefGoogle Scholar
  4. 4.
    R.B. Goldfarb, A.F. Clark, A.I. Braginski and A.J. Pauson. Cryogenics 27 475 1987CrossRefGoogle Scholar
  5. 5.
    G.E. Gough, M.S. Colclough, E.M. Forgan, R.G. Jordan, M. Keene, C.M. Muirhead, A.I.M. Rae, N. Thomas, J.S. Abell and S. Sutton. Nature 326 855 1987.ADSCrossRefGoogle Scholar
  6. 6.
    C.M.Pegrum,G.B. Donaldson, A.H. Carr and A. Hendry. App. Phys. Lett. 51 1364 1987.ADSCrossRefGoogle Scholar
  7. 7.
    R.L. Peterson and J.W. Ekin. Phys. Rev. B. 37 9848 1988.ADSCrossRefGoogle Scholar
  8. 8.
    J. Huang, T.W. Li, X.M. Xie, J.H. Zhang, T.G. Chen and T. Wu. Materials Letters 6 222 1988.CrossRefGoogle Scholar
  9. 9.
    D.N.Matthews, A. Bailey, G.J. Russell, G. Alvarez, S. Town, K.N.R. Taylor, F. Scott, M. McGirr and D.J.H. Corderoy. These Proceedings.Google Scholar
  10. 10.
    D. Dimos, P. Chaudhari, J. Mannhart and F.K. LeGoues. Phys. Rev. Letts. 61 219 1988.ADSCrossRefGoogle Scholar
  11. 11.
    G. Deutscher Physica C. 153–155 15 1988.CrossRefGoogle Scholar
  12. 12.
    K.N.R. Taylor, D.N. Matthews, J. Cochrane, G.J. Russell, S. Bosi, H.B. Sun, G. Alvarez, N. Mondinos, B. Hunter, R.A. Vaile, A. Bailey and T. Puzzer. Physica C. 153–155 818 1988.CrossRefGoogle Scholar
  13. 13.
    K. Epstein, A.M. Goldman and A.M. Kadin. Phys. Rev. Letts. 47 534 1981.ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 1989

Authors and Affiliations

  • K. N. R. Taylor
    • 1
  • D. N. Matthews
    • 1
  • G. J. Russell
    • 1
  • M. Shepherd
    • 1
  • G. Alvarez
    • 1
  • K. Sealey
    • 1
  1. 1.Advanced Electronic Materials and Technology Group, School of PhysicsUniversity of New South WalesKensingtonAustralia

Personalised recommendations