Single-Crystal Growth of Bi-Sr-Ca-Cu Oxides and Its Superconductivity

  • Shunji Nomura
  • Tomohisa Yamashita
  • Hisashi Yoshino
  • Ken Ando
Conference paper


Single crystals of Bi-Sr-Ca-Cu Oxide were grown by the self-flux method. Relation between the single crystals produced and the starting compositions in the Bi-Sr-Ca-Cu Oxide system was obtained for Bi2 (Sr,Ca)2CuOy, Bi2 (Sr,Ca)3-x Cu2Oy and (Sr,Ca)BiO3, The dimensions of the single crystal of the superconductor obtained were up to 7X5X1mm3.

The effect of cation deficiency of Bi2 (Sr,Ca)3-x Cu2Oy on its superconductivity have been studied. This system forms a solid solution within the x range of 0.2 to 0.3. The lattice parameter of the c axis decreases with the increase of x. The strong sattelite peak in the X-ray diffraction patterns originating from the incommensurate modulated structure are observed for the samples with large cation deficiency.

The critical temperature of the single crystal was 84K which was determined by both magnetization and electrical resistivity measurements. The resistivity ratio in the c plane and along the c axis for Bi2(Sr,Ca)3-x Cu2Oy was found to be approximately 35 at Tc onset.


Electrical Resistivity Measurement Alkaline Earth Element Resistivity Ratio Zero Resistance Cation Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    C.Mitchel, M.Herview, M.M.Borel, A.Gradin, F.Deslandes, J.Provost and B.Raveau:Z.Phys.,B68 , (1987) 421ADSCrossRefGoogle Scholar
  2. 2).
    J.Akimitsu, A.Yamazaki, H.Sawa and H.Fujiki:Jpn.J.Appl.Phys.,26 , (1987) L2080ADSCrossRefGoogle Scholar
  3. 3).
    H.Maeda, Y.Tanaka, M.Fukutomi and T.Asano:Jpn.J.Appl.Phys.,27 , (1988) L209ADSCrossRefGoogle Scholar
  4. 4).
    M.Onoda, A.Yamamoto, E.TakayamaMuromachi and S.Takekawa:Jpn.J.Appl.Phys.,27 , (1988) L833ADSCrossRefGoogle Scholar
  5. 5).
    Y.Syono, K.Hiraga, N.Kobayashi, M.Kikuchi, K.Kusada, T.Kajitani, D.Shindo, S.Hosoya, A.Tokiwa, S.Terada and Y.Mnto:Jpn.J.Appl.Phys.,27 , (1988) L569ADSCrossRefGoogle Scholar
  6. 6).
    R.M.Hazen, C.T.Prewitt, R.J.Angel, N.L.Ross, L.W.Finger, C.G.Hadidiacos, D.R.Veblen, P.J.Heaney, P.H.Hor, R.J.Meng, Y.Y.Sim, Y.Q.Wang, Y.Y.Xue, Z.J.Huang, L.Gao, J.Bechtold and C.W.Chu:Phys.Rev.Lett.,60 , (1988) 1174ADSCrossRefGoogle Scholar
  7. 7).
    M.A.Subramanian, C.C.Torardi, J.C.Calabrese, J.Gopalakrishnan,K.J.Morrissey, T.R.Askew, R.S.Flippen, U.Chowdhry and A.W.Sleight:Science,239 , (1988) 1015ADSCrossRefGoogle Scholar
  8. 8).
    T.Kajitani, K.Kusaba, M.Kikuchi, N.Kobayashi, Y.Syono, T.B.Williams and M.Hirabayashi:Jpn.J.Appl.Phys.,27 , (1988) L587ADSCrossRefGoogle Scholar
  9. 9).
    S.A.Sunshine, T.Siegrist, L.F.Schneemeyer, D.W.Murphy, R.J.Cava, B.Batlogg, R.B.van Dover, R.M.Fleming, S.H.Glarum, S.Nakahara, R.Farrow, J.J.Krajewski, S.M.Zahurak, J.V.Waszczak, J.H.Marshall, P.Marsh, L.W.Rupp Jr. and W.F.Peck:preprintGoogle Scholar
  10. 10).
    H.Takagi, H.Eisaki, S.Uchida, A.Maeda, S.Tajima, K.Uchinokura and S.Tanaka:Nature,332,17 March (1988)Google Scholar
  11. 11).
    L.F.Schneemeyer, R.B.van Dover, S.H.Glarum, S.A.Sunshine, R.M.Fleming, B.Batlogg, T.Siegrist, J.H.Marshall, J.V.Waszczak and L.W.Rupp:Nature,332, 31 March (1988)Google Scholar
  12. 12).
    S.Nomura, T.Yamashita, H.Yoshino and K.Ando:Jpn.J.Appl.Phys.,27 , (1988) L1251ADSCrossRefGoogle Scholar
  13. 13).
    K.D.Mackay, M.L.Allan and R.H.Friend:J.Phys.C:Solid State Phys.,21 , (1988) L529ADSCrossRefGoogle Scholar
  14. 14).
    S.Nomura, T.Yamashita, H.Yoshino and K.Ando:to be publishedGoogle Scholar

Copyright information

© Springer Japan 1989

Authors and Affiliations

  • Shunji Nomura
    • 1
  • Tomohisa Yamashita
    • 1
  • Hisashi Yoshino
    • 1
  • Ken Ando
    • 1
  1. 1.Advanced Research Laboratory, Research and Development CenterToshiba CorporationKawasaki, 210Japan

Personalised recommendations