Electronic and Structural Properties of Ba2Y1-X PrXCu3O7-δ

  • Azusa Matsuda
  • Kyoichi Kinoshita
  • Takao Ishii
  • Hiroyuki Shibata
  • Takao Watanabe
  • Tomoaki Yamada
Conference paper


Measurements of the Hall coefficient in the Ba2Y1-xPrxCu3O7-δ system show that an increase in Pr concentration reduces the Hall carrier number (1/eRH). The Cu formal valence, calculated from the Pr valence, which has been determined to be about +3.5 from its magnetic moment, slightly decreases as the Pr concentration increases. The transition temperature shows a stronger dependence on Hall carrier number and Cu-O formal valence than in the oxygen depleted Ba2YCu3O7-δ system. X-ray diffraction measurements show that the structure remains almost unchanged throughout the series. The persistence of the chain structure explains the major difference in Cu-O valence dependence on Tc between the present system and the oxygen depleted Ba2YCu3O7-δ system on the basis of the two band model. Measurements of the magnetoresistance show that the pure Y compound has a large positive magnetoresistance up to 250 K, while the Pr substitution drives it negative. The temperature dependence of the positive magnetoresistance indicates that it is caused by the superconducting fluctuation. The experiment suggests that there is strong correlation between the appearance of the negative magnetoresistance and the suppression of superconductivity. Rietveld analysis reveals that the CuO2 plane becomes less flat as a result of the oxygen displacements, and the oxygen in the BaO plane moves toward the QuO2 plane. These displacements also possibly cause the Tc reduction.


Hall Coefficient Rietveld Analysis Negative Magnetoresistance Formal Valence Magneto Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    M.K.Wu, J.R.Ashburn, C.J.Torng, P.H.Hor, R.L.Meng, L.Gao, Z.J.Huang, Y.Q.Wang and C.W.Chu; Phys.Rev.Lett 58 (1987) 908.ADSCrossRefGoogle Scholar
  2. 2).
    T.Yamada, K.Kinoshita, A.Matsuda, T.Watanabe, and Y.Asano; JpnJ.Appl.Phys. 26 (1987) L633.ADSCrossRefGoogle Scholar
  3. 3).
    L.Soderholm, K.Zhang, D.H.Hinks, M.A.Beno, J.DJorgensen, C.U.Segre, and I.K.Schuller; Nature 328(1987) 604.ADSCrossRefGoogle Scholar
  4. 4).
    B.Okai, M.Kosuge, H.Nozaki, K.Takahashi, and M.Ohta; Jpn.J.Appl.Phys. 27 (1988) 41.ADSCrossRefGoogle Scholar
  5. 5).
    M.W.Shafer, T.Penny and B.L.Olson; Phys.Rev. B36(1987) 4047.ADSGoogle Scholar
  6. 6).
    H.Takagi, S.Uchida, H.Iwabuchi, S.Tajima, and S.Tanaka; JpnJ.Appl.Phvs.Seriesl (1988) 6.Google Scholar
  7. 7).
    K.Takita, H.Akinaga, H.Katoh, H.Asano, and K.Masuda; JpnJ.Appl.Phys. 27 (1988) 67.ADSCrossRefGoogle Scholar
  8. 8).
    Z.Z.Wang, J.Clayhold, N.P.Ong, J.M.Tarascon, L.H.Greene, W.R.McKinnon, and G.H.Hull; Phys.Rev. B36 (1987) 7222.ADSGoogle Scholar
  9. 9).
    A.P.Gonçalves, LC.Santos, E.B.Lopes, R.T.Henriques, and M.Almeida; Phys.Rev.B37 (1988) 7476.ADSGoogle Scholar
  10. 10).
    P.F.Miceli, J.M.Tarascon, L.H.Green, and P.Barboux; Phys.Rev. B37 (1988) 5932.ADSGoogle Scholar
  11. 11).
    A.Matsuda, K.Kinoshita, T.Ishii, H.Shibata, T.Watanabe, and T.Yamada; Phys.Rev.B38 (1988) 2910.ADSGoogle Scholar
  12. 12).
    T.Takabatake, M.Ishikawa, and T.Sugano; JpnJ.Appl.Phys. 26 (1987) 1859.ADSCrossRefGoogle Scholar
  13. 13).
    T.Takahashi, F.Maeda, H.Arai, H.Katayama-Yoshida, Y.Okabe, T.Suzuki, S.Hosoya, A.Fujimori, T.Shidara, T.Koide, T.Miyahara, M.Onoda, S.Shamoto, and M.Sato; Phys.Rev.Lett. 36 (1987) 5686.ADSGoogle Scholar
  14. 14).
    K,D.Usadel; Z.Physik 227 (1969) 260.ADSCrossRefGoogle Scholar
  15. 15).
    K.Maki; J.Low.Temp.Phys. 1 (1969) 513.ADSCrossRefGoogle Scholar
  16. 16).
    W.LJohson, C.C.Tsuei and P.Chaudhari; Phys.Rev. B17(1978) 2884.ADSGoogle Scholar
  17. 17).
    J.S.Moodera, P.M.Tedrow, and J.E.Tkaczk; Phys.Rev. B36(1987) 8329.ADSGoogle Scholar
  18. 18).
    F.Izumi; J.Crystallogr. Soc. Jpn. 27 (1985) 23 in Japanese.CrossRefGoogle Scholar
  19. 19).
    K.Kinoshita, A.Matsuda, H.Shibata, T.Ishii, T.Watanabe, and T.Yamada; Jpn.J.Appl.Phys (to be published).Google Scholar

Copyright information

© Springer Japan 1989

Authors and Affiliations

  • Azusa Matsuda
    • 1
  • Kyoichi Kinoshita
    • 1
  • Takao Ishii
    • 1
  • Hiroyuki Shibata
    • 1
  • Takao Watanabe
    • 1
  • Tomoaki Yamada
    • 1
  1. 1.NTT Basic Research LaboratoriesMusashino, Tokyo, 180Japan

Personalised recommendations