Are Metal-Oxide Superconductors Charged Bosonic Superfluids?

  • L. J. De Jongh
Conference paper


Prior to a discussion of the superconductivity mechanisms in the high-T c metal oxides, the nature of the conductivity mechanism itself, and in particular the type of charge carriers should be considered. As advocated by the present author [1–3], the materials should be viewed as doped, large-gap semiconductors, where the excess charges introduced in the lattice by the doping form mixed-valence small-polarons (highly local, charged defects). At sufficiently high concentration, the mobility of the defects is guaranteed by quantum-mechanical tunneling in a band motion for temperatures smaller than the polaron bandwidth, and by thermally activated hopping in the higher temperature range [4]. Since the moving polarons will see a random electric potential from a.o. the impurity atoms (Sr2+, oxygen deficiency), localization will occur at too low carrier concentrations, leading to a metal-insulator transition of the Anderson type. This behaviour is clearly observable in the experimental resistivity curves as a function of doping level [2]. In the semiconducting samples, thermally activated hopping has indeed been observed.


Defect State Excess Charge Extra Charge Nonlinear Excitation Polarization Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L.J. de Jongh, Solid State Commun. 65 (1988) 963.CrossRefADSGoogle Scholar
  2. [2]
    L.J. de Jongh, Physica C 152 (1988) 171.CrossRefADSGoogle Scholar
  3. [3]
    L.J. de Jongh, Proceed. NATO Adv. Res. Workshop on Condensed Systems of Low Dimensionality, Val de Courcelles, Paris, June 1988, to appear in J. de Chimie Physique.Google Scholar
  4. [4]
    For reviews see N.F. Mott, “Conduction in non-crystalline materials”, Clarendon Press, Oxford, 1987Google Scholar
  5. [4a]
    I.G. Austin and N.F. Mott, Adv. Phys. 18 (1969) 41CrossRefADSGoogle Scholar
  6. [4b]
    and N.F. Mott and M. Kaveh, Adv. Phys. 34 (1985) 329.CrossRefADSGoogle Scholar
  7. [5]
    J. Zaanen, G.A. Sawatzky and J.W. Allen, Phys. Rev. Lett.55 (1985) 418.CrossRefADSGoogle Scholar
  8. [6]
    M.S. Islam, M. Leslie, S.M. Tomlinson and C.R.A. Catlow, J. Phys. C. 21 (1988) L109.CrossRefADSGoogle Scholar
  9. [7]
    See e.g. F. Mila, F.C. Zhang and T.M. Rice, Physica C 153-155 (1988) 1221, and references cited therein.Google Scholar
  10. [8]
    Y.H. Kim, C.M. Foster, A.J. Heeger, S. Cox, L. Acedo and G. StuckyGoogle Scholar
  11. [8a]
    Y.H. Kim et al., submitted to Phys. Rev. Lett.Google Scholar
  12. [8b]
    Y.H. Kim, A.J. Heeger, L. Acedo, G. Stucky and F. Wudl, Phys. Rev. B. 36 (1987) 7252.CrossRefADSGoogle Scholar
  13. [9]
    A.F. Andreev and L.M. Lifshitz, Sov. Phys. J.E.T.P. 29 (1969) 1107.ADSGoogle Scholar
  14. [10]
    J. Livage, J. Phys. (Paris) 12, Coll. C4 (1981) 981Google Scholar
  15. [10a]
    C. Sanchez, F. Babonneau, R. Morineau and J. Livage, Phil. Mag. B47 (1983) 279CrossRefGoogle Scholar
  16. [10b]
    F. Babonneau and J. Livage, Nouveau J. de Chimie 10 (1986) 191.Google Scholar
  17. [11]
    For reviews see e.g. A.R. Bishop, J.A. Krumhansl, and S.E. Trullinger, Physica 1D (1980) 1MathSciNetADSGoogle Scholar
  18. [11a]
    “Solitons and Condensed Matter Physics”, eds. A.R. Bishop and T. Schneider, Springer Series in Solid State Sciences vol.8, 1978Google Scholar
  19. [11b]
    or Tarik Ö. Ogurtani, “Solitons in solids”, Ann. Rev. Mater. Sci. 13 (1983) 67Google Scholar
  20. [11c]
    Solitons in magnetic systems are reviewed e.g. by A.M. Kosevich, B.A. Ivanov and A.S. Kovalev, Sov. Sci. Rev. A. Phys. 6 (1985) 161Google Scholar
  21. [11d]
    L.J. de Jongh, J. Appl. Phys. 53 (1982) 8018.CrossRefADSGoogle Scholar
  22. [12]
    A.S. Davydov, “Solitons in Molecular Systems”, D. Reidel, Publishing Company, Dordrecht 1985.MATHCrossRefGoogle Scholar
  23. [13]
    J.B. Torrance and M. Tinkham, Phys. Rev. 187 (1969) 5587Google Scholar
  24. [13a]
    ibid 187 (1969) 595Google Scholar
  25. [13b]
    M. Date and M. Motokawa, Phys. Rev. Lett. 16 (1966) 1111CrossRefADSGoogle Scholar
  26. [13c]
    J. Phys. Soc. Jpn. 24 (1968) 41.CrossRefADSGoogle Scholar
  27. [14]
    N. Ishimura and H. Shiba, Progr. Theor. Phys. 63 (1980) 743CrossRefADSGoogle Scholar
  28. [14a]
    H.J.M. de Groot, L.J. de Jongh, M. ElMassalami, H.H.A. Smit and R.C. Thiel, Hyp. Int. 27 (1986) 93.CrossRefADSGoogle Scholar
  29. [15]
    Y. Onodera, J. Phys. Soc. Jpn. 56 (1987) 250.CrossRefADSGoogle Scholar
  30. [16]
    W.P. Su, J.R. Schrieffer and A.J. Heeger, Phys. Rev. Lett. 42 (1979) 1698, and Phys. Rev. B 22 (1980) 2099.CrossRefADSGoogle Scholar
  31. [17]
    J.R. Schrieffer, Int. School of Physics “Enrico Fermi”, Course 89 (1983) 300.Google Scholar
  32. [18]
    S. Ichinose, Solid State Commun. 50 (1984) 137.CrossRefADSGoogle Scholar
  33. [19]
    N. Kumar, Physica C 153–155 (1988) 1227CrossRefADSGoogle Scholar
  34. [19a]
    M.M. Mohan and N. Kumar, J. Phys. C. 20 (1987) L527.CrossRefADSGoogle Scholar
  35. [20]
    T.V. Ramakrishnan, Physica C 153–155 (1988) 555.CrossRefADSGoogle Scholar
  36. [21]
    T. Matsubara and H. Matsuda, Progr. Theor. Phys. 16 (1956) 569MATHCrossRefADSGoogle Scholar
  37. [21a]
    ibid. 17 (1957) 19.Google Scholar
  38. [22]
    M.R. Schafroth, Phys. Rev. 100 (1955) 463.MathSciNetCrossRefADSGoogle Scholar
  39. [23]
    A. Alexandrov and J. Ranninger, Phys. Rev. B. 24 (1981) 1164CrossRefADSGoogle Scholar
  40. [23a]
    A.S. Alexandrov, J. Ranninger and S. Robaszkiewicz, Phys. Rev. B. 33 (1986) 4526 and references cited.CrossRefADSGoogle Scholar
  41. [24]
    V.J. Emery, Phys. Rev. B 17 (1976) 2989CrossRefADSGoogle Scholar
  42. [24a]
    M. Fowler, Phys. Rev. B 17 (1978) 2989.CrossRefADSGoogle Scholar
  43. [25]
    P. Nozières and S. Schmitt-Rink, J. Low Temp. Phys. 59 (1985) 195.CrossRefADSGoogle Scholar
  44. [26]
    See e.g. T.T.M. Palstra, B. Batlogg, L.F. Schneemeyer, and R.B. van Dover, Phys. Rev. B 38 (1988) to appearGoogle Scholar
  45. [26a]
    T.T.M. Palstra, B. Batlogg, L.F. Schneemeyer, R.B. van Dover and J.V. Waszczak, preprints.Google Scholar
  46. [27]
    See e.g. L.J. de Jongh and A.R. Miedema, “Experiments on simple magnetic model systems”, Taylor and Francis (Monographs in Physics), London, 1974Google Scholar
  47. [27a]
    also published in Adv. Phys. 23 (1974) 1, and references cited in this work.Google Scholar
  48. [28]
    For a discussion of the magnetic analogues, see e.g. H.J.M. de Groot and L.J. de Jongh, Phvsica 141B (1986) 1Google Scholar
  49. [28a]
    Physica Scripta T13 (1986) 219.Google Scholar
  50. [29]
    For a recent review of theory, see e.g. T. Nattermann and J. Villain in “Phase Transitions”, 1988, vol.11, p.5, Gordon and Breach Science Publishers Inc., England (reprints available from the publishers).Google Scholar
  51. [30]
    See e.g. R.L. Carlin and L.J. de Jongh, Chem. Rev. 86 (1986) 675CrossRefGoogle Scholar
  52. [30a]
    L.J. de Jongh in “Recent Developments in Condensed Matter Physics” ed. J.T. Devreese, Plenum Press, 1981, vol.1, p.359.Google Scholar

Copyright information

© Springer Japan 1989

Authors and Affiliations

  • L. J. De Jongh
    • 1
  1. 1.Kamerlingh Onnes LaboratoryState University LeidenLeidenThe Netherlands

Personalised recommendations