Skip to main content

Are Metal-Oxide Superconductors Charged Bosonic Superfluids?

  • Conference paper
Advances in Superconductivity
  • 447 Accesses

Abstract

Prior to a discussion of the superconductivity mechanisms in the high-T c metal oxides, the nature of the conductivity mechanism itself, and in particular the type of charge carriers should be considered. As advocated by the present author [1–3], the materials should be viewed as doped, large-gap semiconductors, where the excess charges introduced in the lattice by the doping form mixed-valence small-polarons (highly local, charged defects). At sufficiently high concentration, the mobility of the defects is guaranteed by quantum-mechanical tunneling in a band motion for temperatures smaller than the polaron bandwidth, and by thermally activated hopping in the higher temperature range [4]. Since the moving polarons will see a random electric potential from a.o. the impurity atoms (Sr2+, oxygen deficiency), localization will occur at too low carrier concentrations, leading to a metal-insulator transition of the Anderson type. This behaviour is clearly observable in the experimental resistivity curves as a function of doping level [2]. In the semiconducting samples, thermally activated hopping has indeed been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.J. de Jongh, Solid State Commun. 65 (1988) 963.

    Article  ADS  Google Scholar 

  2. L.J. de Jongh, Physica C 152 (1988) 171.

    Article  ADS  Google Scholar 

  3. L.J. de Jongh, Proceed. NATO Adv. Res. Workshop on Condensed Systems of Low Dimensionality, Val de Courcelles, Paris, June 1988, to appear in J. de Chimie Physique.

    Google Scholar 

  4. For reviews see N.F. Mott, “Conduction in non-crystalline materials”, Clarendon Press, Oxford, 1987

    Google Scholar 

  5. I.G. Austin and N.F. Mott, Adv. Phys. 18 (1969) 41

    Article  ADS  Google Scholar 

  6. and N.F. Mott and M. Kaveh, Adv. Phys. 34 (1985) 329.

    Article  ADS  Google Scholar 

  7. J. Zaanen, G.A. Sawatzky and J.W. Allen, Phys. Rev. Lett.55 (1985) 418.

    Article  ADS  Google Scholar 

  8. M.S. Islam, M. Leslie, S.M. Tomlinson and C.R.A. Catlow, J. Phys. C. 21 (1988) L109.

    Article  ADS  Google Scholar 

  9. See e.g. F. Mila, F.C. Zhang and T.M. Rice, Physica C 153-155 (1988) 1221, and references cited therein.

    Google Scholar 

  10. Y.H. Kim, C.M. Foster, A.J. Heeger, S. Cox, L. Acedo and G. Stucky

    Google Scholar 

  11. Y.H. Kim et al., submitted to Phys. Rev. Lett.

    Google Scholar 

  12. Y.H. Kim, A.J. Heeger, L. Acedo, G. Stucky and F. Wudl, Phys. Rev. B. 36 (1987) 7252.

    Article  ADS  Google Scholar 

  13. A.F. Andreev and L.M. Lifshitz, Sov. Phys. J.E.T.P. 29 (1969) 1107.

    ADS  Google Scholar 

  14. J. Livage, J. Phys. (Paris) 12, Coll. C4 (1981) 981

    Google Scholar 

  15. C. Sanchez, F. Babonneau, R. Morineau and J. Livage, Phil. Mag. B47 (1983) 279

    Article  Google Scholar 

  16. F. Babonneau and J. Livage, Nouveau J. de Chimie 10 (1986) 191.

    Google Scholar 

  17. For reviews see e.g. A.R. Bishop, J.A. Krumhansl, and S.E. Trullinger, Physica 1D (1980) 1

    MathSciNet  ADS  Google Scholar 

  18. “Solitons and Condensed Matter Physics”, eds. A.R. Bishop and T. Schneider, Springer Series in Solid State Sciences vol.8, 1978

    Google Scholar 

  19. or Tarik Ö. Ogurtani, “Solitons in solids”, Ann. Rev. Mater. Sci. 13 (1983) 67

    Google Scholar 

  20. Solitons in magnetic systems are reviewed e.g. by A.M. Kosevich, B.A. Ivanov and A.S. Kovalev, Sov. Sci. Rev. A. Phys. 6 (1985) 161

    Google Scholar 

  21. L.J. de Jongh, J. Appl. Phys. 53 (1982) 8018.

    Article  ADS  Google Scholar 

  22. A.S. Davydov, “Solitons in Molecular Systems”, D. Reidel, Publishing Company, Dordrecht 1985.

    Book  MATH  Google Scholar 

  23. J.B. Torrance and M. Tinkham, Phys. Rev. 187 (1969) 5587

    Google Scholar 

  24. ibid 187 (1969) 595

    Google Scholar 

  25. M. Date and M. Motokawa, Phys. Rev. Lett. 16 (1966) 1111

    Article  ADS  Google Scholar 

  26. J. Phys. Soc. Jpn. 24 (1968) 41.

    Article  ADS  Google Scholar 

  27. N. Ishimura and H. Shiba, Progr. Theor. Phys. 63 (1980) 743

    Article  ADS  Google Scholar 

  28. H.J.M. de Groot, L.J. de Jongh, M. ElMassalami, H.H.A. Smit and R.C. Thiel, Hyp. Int. 27 (1986) 93.

    Article  ADS  Google Scholar 

  29. Y. Onodera, J. Phys. Soc. Jpn. 56 (1987) 250.

    Article  ADS  Google Scholar 

  30. W.P. Su, J.R. Schrieffer and A.J. Heeger, Phys. Rev. Lett. 42 (1979) 1698, and Phys. Rev. B 22 (1980) 2099.

    Article  ADS  Google Scholar 

  31. J.R. Schrieffer, Int. School of Physics “Enrico Fermi”, Course 89 (1983) 300.

    Google Scholar 

  32. S. Ichinose, Solid State Commun. 50 (1984) 137.

    Article  ADS  Google Scholar 

  33. N. Kumar, Physica C 153–155 (1988) 1227

    Article  ADS  Google Scholar 

  34. M.M. Mohan and N. Kumar, J. Phys. C. 20 (1987) L527.

    Article  ADS  Google Scholar 

  35. T.V. Ramakrishnan, Physica C 153–155 (1988) 555.

    Article  ADS  Google Scholar 

  36. T. Matsubara and H. Matsuda, Progr. Theor. Phys. 16 (1956) 569

    Article  MATH  ADS  Google Scholar 

  37. ibid. 17 (1957) 19.

    Google Scholar 

  38. M.R. Schafroth, Phys. Rev. 100 (1955) 463.

    Article  MathSciNet  ADS  Google Scholar 

  39. A. Alexandrov and J. Ranninger, Phys. Rev. B. 24 (1981) 1164

    Article  ADS  Google Scholar 

  40. A.S. Alexandrov, J. Ranninger and S. Robaszkiewicz, Phys. Rev. B. 33 (1986) 4526 and references cited.

    Article  ADS  Google Scholar 

  41. V.J. Emery, Phys. Rev. B 17 (1976) 2989

    Article  ADS  Google Scholar 

  42. M. Fowler, Phys. Rev. B 17 (1978) 2989.

    Article  ADS  Google Scholar 

  43. P. Nozières and S. Schmitt-Rink, J. Low Temp. Phys. 59 (1985) 195.

    Article  ADS  Google Scholar 

  44. See e.g. T.T.M. Palstra, B. Batlogg, L.F. Schneemeyer, and R.B. van Dover, Phys. Rev. B 38 (1988) to appear

    Google Scholar 

  45. T.T.M. Palstra, B. Batlogg, L.F. Schneemeyer, R.B. van Dover and J.V. Waszczak, preprints.

    Google Scholar 

  46. See e.g. L.J. de Jongh and A.R. Miedema, “Experiments on simple magnetic model systems”, Taylor and Francis (Monographs in Physics), London, 1974

    Google Scholar 

  47. also published in Adv. Phys. 23 (1974) 1, and references cited in this work.

    Google Scholar 

  48. For a discussion of the magnetic analogues, see e.g. H.J.M. de Groot and L.J. de Jongh, Phvsica 141B (1986) 1

    Google Scholar 

  49. Physica Scripta T13 (1986) 219.

    Google Scholar 

  50. For a recent review of theory, see e.g. T. Nattermann and J. Villain in “Phase Transitions”, 1988, vol.11, p.5, Gordon and Breach Science Publishers Inc., England (reprints available from the publishers).

    Google Scholar 

  51. See e.g. R.L. Carlin and L.J. de Jongh, Chem. Rev. 86 (1986) 675

    Article  Google Scholar 

  52. L.J. de Jongh in “Recent Developments in Condensed Matter Physics” ed. J.T. Devreese, Plenum Press, 1981, vol.1, p.359.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Japan

About this paper

Cite this paper

De Jongh, L.J. (1989). Are Metal-Oxide Superconductors Charged Bosonic Superfluids?. In: Kitazawa, K., Ishiguro, T. (eds) Advances in Superconductivity. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68084-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68084-0_21

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68086-4

  • Online ISBN: 978-4-431-68084-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics