Chemical and Physical Properties of Organic Superconductor ϰ-(BEDT-TTF)2Cu(NCS)2

  • G. Saito
  • H. Urayama
  • H. Yamochi
  • K. Oshima


An overview of the chemical and physical properties of a new organic superconductor κ-(BEDTTTF)2Cu(NCS)2, of which Tc (10.4-11.OK) is the highest among those of organic superconductors so far known, is presented. Distorted-hexagon-shaped crystals of the Cu(NCS)2 salt were prepared by the electrochemical oxidation of BEDT-TTF in 1,1,2-trichloroethane in the presence of CuSCN, KSCN, and 18-crown-6 ether (or K (18-crown-6 ether)Cu(NCS)2 complex, or CuSCN and TBA·SCN, as a supporting electrolyte) under a constant current of 1–5 μA. The black shinny crystals were stable against air and moisture and start to decompose above 190 °C.

The crystal structures indicate that both lattice parameters and packing pattern of BEDT-TTF molecules are almost the same to those of κ-(BEDT-TTF) 2I3 salt (Tc=3.6K) despite the considerable difference of Tc between them. Two BEDT-TTF molecules are dimerized and the dimers are linked one another by short sulfur..sulfur atomic contacts to construct two-dimensional conducting BEDT-TTF sheets in the bc-plane. The anions, Cu(NCS)2 , form one-dimensional zigzag polymer along the b-axis and the polymers construct insulating sheets in the bc-plane. Every conducting layer is sandwiched by the insulating layers along the a-axis. Two kinds of layers are linked by hydrogen bonds between terminal ethylene groups of BEDT-TTF and nitrogen and sulfur atoms of the anions. Due to the lack of the inversion center of the crystal, the space group is lowered from P21/c of κ-(BEDT-TTF)2I3 to P21· Owing to this symmetry the Cu(NCS)2 salt is optically active (specific rotatory power is about 230° at 632.8nm) and the Fermi surface based on extended Huckel MO is composed of both a cylindrical closed surface (18% of the first Brillouin zone) and a modulated quasi-one-dimensional open surface.

Tc of the BEDT-TTF-h8 salt is 10.2–10.4K by four-probe d.c. resistivity measurements and Tc decreases with increasing pressure. An inverse isotope effect was observed in our samples so far measured (more than seven each samples). The deuterated samples showed higher Tc by 0.5K measured by the RF penetration depth measurements. Magnetic susceptibility measurements indicate that the salt is non-ideal class II superconductor and almost 100% of the perfect diamagnetism was observed below 7K. Upper critical field measurements showed a dimensional cross-over-like behavior (3D to 2D) when the external field is parallel to the 2D plane. Hc2 values at 6K were about 13T and O.5T in the 2D plane and normal to it, respectively. The estimated anisotropy in the GL coherence length from the critical field near Tc is ξbc(0):ξa*(0)=182Å:9.6Å=19:1. The Shubnikov-de Haas signal was observed below 1K and above 8T. The period of 0.0015T-1 corresponds to the area of extremal orbit of 18% of the first Brillouin zone. The anisotropic nature of the thermoelectric power of the crystal in the 2D plane can be explained on the basis of the complicated Fermi surface. No EPR signal ascribed to Cu2+ was observed. The linewidth of the EPR signal of BEDT-TTF increased monotonically with decreasing temperature in contrast to the predictions of the Elliot formula for the spin relaxation in metals. A Korringa relation was observed in 1H NMR measurements between 77K and 10K. Below 10K a big enhancement of the relaxation rate was observed with a peak at considerably lower temperature than Tc. Anisotropic superconducting gaps were detected by tunneling spectroscopic work. Tc of several BEDT-TTF superconductors were discussed on the basis of the effective volume of one electron for the molecular design of new organic superconductors.


Fermi Surface Critical Field Organic Superconductor Inverse Isotope Effect Korringa Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.S.P.Parkin, E.M.Engler, R.R.Schumaker, R.Lagier, V.Y.Lee, J.C.Scott and R.L.Greene, Phys. Rev. Lett., 50 (1983) 270.ADSCrossRefGoogle Scholar
  2. 2.
    J.M.Williams, H.H.Wang, M.A.Beno, T.J.Emge, L.M.Sowa, P.T.Copps, F.Behroozi, L.N.Hall, K.D.Carlson and G.W.Crabtree, Inorg. Chem., 23 (1984) 3839CrossRefGoogle Scholar
  3. 3.
    H.H.Wang, M.A.Beno, V.Geiser, M.A.Firestone, K.S.Webb, L.Nunez, G.W.Crabtree, K.D.Carlson, J.M.Williams, L.J.Azevado, J.F.Kwak and J.E.Schirber, Inorg. Chem., 24 (1985) 2466.CrossRefGoogle Scholar
  4. 4.
    T.Mori and H.Inokuchi, Solid State Commun., 64 (1987) 335.ADSCrossRefGoogle Scholar
  5. 5.
    R.N.Lyubovskaya, R.B.Lyubovskii, R.P.Shibaeva, M.Z.Aldoshina, L.M.Gol’denberg, L.P.Rozenber, M.L.Khidekel and Yu.F.Shul’pyakov, Pis’ma Zh. Eksp. Teor. Fiz., 42 (1985) 380.Google Scholar
  6. 6.
    R.N.Lyubovskaya, E.A.Zhilyaeva, A.V.Zvarykina, V.N.Laukhin, R.B.Lyubovskii and S.I.Pesotskii, ibid, 45 (1987) 416.ADSGoogle Scholar
  7. 7.
    E.B.Yagubskii, I.F.Shchegolev, V.N.Laukhin, R.P.Shibaeva, E.E.Kostyuchenko, A.G.Khomenko, Yu.V.Sushko and A.V.Zvarykina, ibid, 40 (1984) 387.Google Scholar
  8. 8.
    E.B.Yagubskii, I.F.Shchegolev, V.N.Laukhin, P.A.Kononovich, M.V.Karatsovnik, A.V.Zvarykina and L.I.Buravov, ibid, 39 (1984) 12.Google Scholar
  9. 9.
    V.N.Laukhin, E.E.Kostyuchenko, Yu.V.Sushko, I.F.Shchegolev and E.B.Yagubskii, ibid, 41 (1985) 68Google Scholar
  10. 9a.
    K.Murata, M.Tokumoto, H.Anzai, H.Bando, G.Saito, K.Kajimura and T.Ishiguro, Solid State Commun., 54 (1985) 1236.Google Scholar
  11. 10.
    V.F.Kaminskii, T.G.Prokhoroea, R.P.Shibaeva and E.B.Yagubskii, Pis’ma Zh. Eksp. Teor. Fiz., 41 (1984) 15.Google Scholar
  12. 11.
    H.Kobayashi, R.Kato, A.Kobayashi, Y.Nishio, K.Kajita and W.Sasaki, Chem. Lett., 1986, 789, 833.CrossRefGoogle Scholar
  13. 12.
    A.Kobayashi, R.Kato, H.Kobayashi, S.Moriyama, Y.Nishio, K.Kajita and W.Sasaki, ibid, 1987 459.Google Scholar
  14. 13.
    F.Creuzet, G.Creuzet, D.Jerome, P.Schweitzer and H.J.Keller, J. de Phys. Lett. 46 (1985) L1079CrossRefGoogle Scholar
  15. 13a.
    V.B.Ginodman, A.V.Gudenko, I.I.Zasavitskii and E.B.Yagubskii, Pis’ma Zh. Eksp. Teor. Fiz., 42 (1985) 384Google Scholar
  16. 13b.
    W.Kang, G.Creuzet, D.Jerome and C.Lenoir, J. de Phys., 48 (1987) 1035.CrossRefGoogle Scholar
  17. 14.
    D.Schweitzer, P.Bele, H.Brunner, E.Gogu, U.Haeberlen, I.Hennig, I.Klutz, P.Swietlik and H.J.Keller, Z. Phys. B-Condensed Matter, 67 (1987) 489.ADSCrossRefGoogle Scholar
  18. 15.
    M.Tokumoto, H.Bando, K.Murata, H.Anzai, N.Kinoshita, K.Kajimura, T.Ishiguro and G.Saito, Synth. Met., 13 (1986) 9.CrossRefGoogle Scholar
  19. 16.
    J.M.Williams, M.A.Beno, H.H.Wang, U.W.Geiser, T.J.Emge, P.C.W.Leung, G.W.Crabtree, K.D.Carlson, L.J.Azevedo, E.L.Venturini, J.E.Schirber J.F.Kwak and M-H. Whangbo, Physica 136B (1986) 371.Google Scholar
  20. 17.
    T.J.Kistenmacher, Solid State Commun., 63 (1987) 977.ADSCrossRefGoogle Scholar
  21. 18.
    Very recent studies of the following groups indicate the existence of other phases of Cu(NCS)2 salt of BEDT-TTF than oursGoogle Scholar
  22. 18a.
    S.Gartner, E.Gogu, I.Heinen, H.J.Keller, T.Klutz and D.Schwietzer, Solid State Commun., submitted, where the magnitude and temperature dependence of EPR line width (alignment of the measurements is not specified) are completely different from oursGoogle Scholar
  23. 18b.
    K.D.Carlson, U.Geiser, A.M.Kini, H.H.Wang, L.K.Montgomery, W.K.Kwok, M.A.Beno, J.M.Williams, C.S.Cariss, G.W.Crabtree, M-H.Whangbo and M.Evain, Inorg. Chem., 27 (1988) 965CrossRefGoogle Scholar
  24. 18c.
    N.Kinoshita, K.Takahashi, K.Murata, M.Tokumoto, and H.Anzai, Solid State Commun., submitted, they obtained a salt with metal-insulator transition at around 200K with different crystal structure from ours, see also references in the proceedings of ICSM’88 (Synth. Met. to be published).Google Scholar
  25. 19.
    A.Ugawa, G.Ojima, K.Yakushi and H.Kuroda, Phys. Rev. B, in press.Google Scholar
  26. 20.
    H.Urayama, H.Yamochi, G.Saito, K.Nozawa, T.Sugano, M.Kinoshita, S.Sato, K.Oshima, A.Kawamoto and J.Tanaka, Chem. Lett., 1988 55.Google Scholar
  27. 21.
    H.Urayama, H.Yamochi, G.Saito, S.Sato, A.Kawamoto, J.Tanaka, T.Mori, Y.Maruyama and H.Inokuchi, ibid, 1988 463.Google Scholar
  28. 22.
    K.Oshima, T.Mori, H.Inokuchi, H.Urayama, H.Yamochi and G.Saito, Phys. Rev. B, 37 (1988).Google Scholar
  29. 23.
    K.Oshima, H.Urayama, H.Yamochi and G.Saito, Physica B+C, in press.Google Scholar
  30. 24.
    K.Oshima, H.Urayama, H.Yamochi and G.Saito, J. Phys. Soc. Jpn., 57 (1988) 730.ADSCrossRefGoogle Scholar
  31. 25.
    G.Saito, J. J. Appl. Phys., Series 1 Superconducting Materials, (1988) 165.Google Scholar
  32. 26.
    J.E.Schirber and C.J.M.Northrup, Jr., Phys. Rev. B, 10 (1974) 3818.ADSCrossRefGoogle Scholar
  33. 27.
    T.Sugano et al., private communication.Google Scholar
  34. 28.
    H.Urayama, H.Yamochi, G.Saito, T.Sugano, M.Kinoshita, T.Inabe, T.Mori, Y.Maruyama and H.Inokuchi, Chem. Lett., 1988 1057.Google Scholar
  35. 29.
    K.Nozawa, T.Sugano, H.Urayama, H.Yamochi, G.saito and M.Kinoshita, ibid, 1988 617.Google Scholar
  36. 30.
    T.Sugano, K.Terui, S.Mino, K.Nozawa, H.Urayama, H.Yamochi, G.Saito and M.Kinoshita, ibid, 1988 1171Google Scholar
  37. 31.
    T.Takahashi, T.Tokiwa, K.Kanoda, H.Urayama, H.Yamochi and G.Saito, Phys. Rev. Lett., submitted.Google Scholar
  38. 32.
    Y.Maruyama, T.Inabe, H.Urayama, H.Yamochi and G.Saito, Solid State Commun., 67 (1988) 35.ADSCrossRefGoogle Scholar
  39. 33.
    Y.Hasegawa and H.Fukuyama, J. Phys. Soc. Jpn., 56 (1987) 877.ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 1989

Authors and Affiliations

  • G. Saito
    • 1
  • H. Urayama
    • 1
  • H. Yamochi
    • 1
  • K. Oshima
    • 2
  1. 1.Institute for Solid State PhysicsThe University of TokyoMinato-ku, Tokyo, 106Japan
  2. 2.Cryogenic CenterThe University of TokyoBunkyo-ku, Tokyo, 113Japan

Personalised recommendations