Advertisement

A Superconducting IC Technology Based on Refractory Josephson Tunnel Junctions

  • Susumu Takada
Conference paper

Abstract

A superconducting integrated circuit(IC) technology based on refractory Josephson tunnel junctions, which has been developed at ETL over recent years, is presented. Refractory superconducting materials of sputtered Nb and NbN films are employed to integrate Josephson tunnel junctions. In order to make superconducting ICs, a reactive ion etching process including self-alignment insulation has been developed. Logic circuit design, logic simulation and automatic layout of logic cells are performed by the computer aided design(CAD) system for Josephson circuits. A Josephson lk-bit random access memory(RAM) chip has been developed successfully by introducing a new approach of memory cell including periphery circuits. The refractory tunnel junction IC technology has been used to make progress in other application fields such as fluxon, sampler and so on.

Keywords

Tunnel Junction Random Access Memory Logic Simulation Integrate Circuit Technology Josephson Tunnel Junction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refferences

  1. [l]
    IBM J. Res. Develop., 24, (1980)(Special issue on Josephson Computer Technology).Google Scholar
  2. [2]
    H.Kroger et al., Appl. Phys. Lett., 39, 280(1981).ADSCrossRefGoogle Scholar
  3. [3]
    M.Gurvitch et al., Appl. Phys. Lett. 42, 472(1983).ADSCrossRefGoogle Scholar
  4. [4]
    A.Shoji et al., Appl. Phys. Lett. 46, 1098(1985).ADSCrossRefGoogle Scholar
  5. [5]
    A.Shoji et al., Appl. Phys. Lett. 41, 1097(1982).ADSCrossRefGoogle Scholar
  6. [6]
    S.Kosaka et al., IEEE Trans. Magn. MAG-21, 102(1985).ADSCrossRefGoogle Scholar
  7. [7]
    H.Nakagawa et al., IEEE Trans. C.S. CAS-34. 1123(1987).CrossRefGoogle Scholar
  8. [8]
    N.Fujimaki et al., IEEE J.Solid-State circuits SC-23, 852(1988).CrossRefGoogle Scholar
  9. [9]
    Y.Hatano et al., Ext. Abst. of 1987 ISEC 239(1987).Google Scholar
  10. [l0]
    S.Kotani et al., IEICE Tech. Rep. Vol.88. 73(1988).Google Scholar
  11. [11]
    Y.Wada et al., 1988 ISSCC Digest Tech.Papers, 84(1988).Google Scholar
  12. [12]
    I.Kurosawa et al., Ext. Abst. 20th Conf. on SSDM 605(1988).Google Scholar
  13. [13]
    H.Nakagawa et al., Jpn. J. Appl. Phys. 25, L70(1985).CrossRefGoogle Scholar
  14. [14]
    D.Jillie et al., IEEE, J. Solid State Circuits, SC-18. 173(1983).ADSCrossRefGoogle Scholar
  15. [15]
    K.Kuroda et al., Electronics Lett. Vol.23, 163(1987).ADSCrossRefGoogle Scholar
  16. [16]
    H.Nakagawa et al., IEEE Trans. Magn. IEEE Trans. Magn., MAG-23, 739(1987).ADSCrossRefGoogle Scholar
  17. [17]
    S.Kosaka et al., presented in 1988 Applied Superconductivity Conference.Google Scholar
  18. [18]
    M.Koyanagi et al., Ext. Abst. of 1987 ISEC, 33(1987).Google Scholar
  19. [19]
    Y.Sakamoto et al., Ext. Abst. of 1987 ISEC, 84(1987).Google Scholar
  20. [20]
    H.Akoh et al., Jpn. J. Appl. Phys. 22, L435(1983).ADSCrossRefGoogle Scholar
  21. [21]
    S.Sakai et al., Ext. Abst. of 1987 ISEC, 118(1987).Google Scholar
  22. [22]
    H.Akoh et al., Ext. Abst. of 1987 ISEC, 122(1987).Google Scholar
  23. [23]
    K.Ishibasi et al., presented in 1988 Applied Superconductivity Conference.Google Scholar

Copyright information

© Springer Japan 1989

Authors and Affiliations

  • Susumu Takada
    • 1
  1. 1.Electrotechnical LaboratoryTsukuba, 305Japan

Personalised recommendations