Substitution Effect of Y for Ca in Tl-Ba-Ca-Cu-O System

  • T. Manako
  • Y. Shimakawa
  • Y. Kubo
  • T. Satoh
  • H. Igarashi
Conference paper


The substitution effect of Y for Ca in Tl2Ba2CaCu2O8 was studied. With the substituion, Tc decreased and lattice parameters changed systematically. Another phase, however, was found in highly substituted samples. X-ray diffraction and EPMA studies revealed that this new phase has a chemical composition of TIBa2Y1-xCaxCu2O7 (1212 phase) and its structure is similar to both Tl2Ba2CaCu2O8 and YBa2Cu3O7. This structure contains two Cu perovskite-like pyramids sandwiched by monolayer Tl-O sheets, in contrast to that there are bilayer Tl-O sheets in the Tl2Ba2CaCu2Ox and Cu-O chain layer in the YBa2Cu3O7.

For x = 0, electrical property of this phase is semiconductor-like and non-superconducting. With increasing x, it becomes metallic, and for x> 0.3, it exhibits superconductivity.


Substitution Effect Rietveld Analysis Gold Foil Single Phase Sample Crystal Structure Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Z.Z. Sheng and A.M. Hermann, Nature 332 (1988) 138.ADSCrossRefGoogle Scholar
  2. [2]
    Y. Kubo,Y. Shimakawa,T. Manako,T. Satoh and H. Igarashi, Jpn. J. Appl. Phys. 27 (1988) L591.ADSCrossRefGoogle Scholar
  3. [3]
    Y. Shimakawa, Y. Kubo, T. Manako, Y. Nakabayashi and H. Igarashi, Physica C, 156 (1988) 97.ADSCrossRefGoogle Scholar
  4. [4]
    N. Fukushima, H. Niu and K. Ando, Jpn. J. Appl. Phys (submitted).Google Scholar
  5. [5]
    T. Manako, Y. Shimakawa, Y. Kubo, T. Satoh and H. Igarashi, Physica C (in press).Google Scholar
  6. [6]
    F. Izumi, J. Crystallogra. Soc. Jpn. 27 (1985) 23 [in Japanese].CrossRefGoogle Scholar
  7. [7]
    S. Iijima, T. Ichihashi and Y. Kubo, Jpn. J. Appl. Phys. 27 (1988) L817.ADSCrossRefGoogle Scholar
  8. [8]
    S. Iijima, T. Ichihashi, Y. Shimakawa, T. Manako and Y. Kubo, Jpn. J. Appl. Phys. 27 (1988) L837.ADSCrossRefGoogle Scholar
  9. [9]
    S. Iijima, T. Ichihashi, Y. Shimakawa, T. Manako and Y. Kubo, Jpn. J. Appl. Phys. 27 (1988) L1054.ADSCrossRefGoogle Scholar
  10. [10]
    R. Bayers, S.S.P. Parkin, V.Y. Lee, A.I. Nazzal, R. Savoy, G. Gorman and T.C. Huang, Phys. Rev. Lett. 61(1988) 750.ADSCrossRefGoogle Scholar
  11. [11]
    B. Morosin, D.S. Ginley, P.F. Hlava, M.J. Carr, R.J. Baughman, J.E. Schirber, E.L. Venturmi and J.F. Kwak, Physica C 152 (1988) 413.ADSCrossRefGoogle Scholar
  12. [12]
    M. Hervieu, A. Maignan, C. Martin, C. Michel, J. Provost and B. Raveau, J. Solid State Cnem. 75 (1988) 212.ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 1989

Authors and Affiliations

  • T. Manako
    • 1
  • Y. Shimakawa
    • 1
  • Y. Kubo
    • 1
  • T. Satoh
    • 2
  • H. Igarashi
    • 1
  1. 1.Fundamental Research LaboratoriesNEC CorporationMiyamae-ku, Kawasaki, 213Japan
  2. 2.Resources and Environment Protection LaboratoriesNEC CorporationMiyamae-ku, Kawasaki, 213Japan

Personalised recommendations