Advertisement

Crystal Structure of Sr-Ca-Cu-O: A Comparison Between That of Sr-Ca-Cu-O and of Bi-Sr-Ca-Cu-O

  • Atsuhiro Kunishige
  • Hiroshi Yoshikawa
  • Toshihiko Anno
  • Itsuhiro Fujii
  • Hiroshi Daimon
  • Shizuka Yoshii
Conference paper

Abstract

A new oxide-superconductor without rare-earth elements, Bi-Sr-Ca-Cu-O, has layered structure with alternative stacking of perovski te-1ike layers, consisting of Sr, Ca, Cu and O, and Bi2O2 layers. We are interested in the contribution of the Bi2O2 layer in this compound to the crystal structure that is closely related to superconductivity. In order to understand the role of the Bi2O2 layer in this type of superconductors, we synthesized Sr-Ca-Cu-O compounds and made a comparison between the structures of Sr-Ca-Cu-O and Bi-Sr-Ca-Cu-O.

The crystal structure of the samples was refined by the Rietveld analysis of their X-ray powder diffraction patterns. The crystal structure of Sr-Ca-Cu-O is much different from that of Bi-Sr-Ca-Cu-0. We have found zigzag band like structure consisting of Cu-O in Sr-Ca-Cu-O instead of Cu-O4 sheets in Bi-Sr-Ca-Cu-O. Bi-Sr-Ca-Cu-O synthesized from Bi2O3 and Sr-Ca-Cu-O powder by the solid state reaction showed superconductivity. This result suggests that the Bi2O2 layer plays an important role in forming the Cu-O4 sheets that is essential for the superconductivity of the high-Tc oxide-superconductors.

Keywords

Electrical Resistivity Constant Magnetic Field Rietveld Analysis Superconducting Oxide Bi202 Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    J. G. Bednortz and K. A. Muller: Z. Phys. B64 (1987) 189.ADSGoogle Scholar
  2. 2).
    M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, J. Huang, Y. Q. Wang and C. W. Chu: Phys. Rev. Lett. 58 (1987) 908.ADSCrossRefGoogle Scholar
  3. 3).
    J. Akimitsu, A. Yamazaki, H. Sawa and H. Fujiki: Jpn. J. Appl. Phys. 26 (1987) L2080.ADSCrossRefGoogle Scholar
  4. 4).
    C. Michel, M. Hervieu, M. M. Borel, A. Grandin, F. Deslandes, J. Provost and B. Raveau: Z. Phys. B68 (1988) 421.ADSGoogle Scholar
  5. 5).
    H. Maeda, Y. Tanaka, M. Fukutomi and T. Asano: Jpn. J. Appl. Phys. 27 (1988) L209.ADSCrossRefGoogle Scholar
  6. 6).
    C. L. Teske and Hk. Muller-Buschbaum: Z. Anorg. Allg. Chem. 379 (1970) 234.CrossRefGoogle Scholar
  7. 7).
    F. Izumi: J. Cryst. Soc. Japan 27 (1985) 23 [in Japanese].CrossRefGoogle Scholar
  8. 8).
    T. KaJitani, K. Kusaba, M. Kikuchi, N. Kobayashi, Y. Syono, T. B. Williams and M. Hirabayashi: Jpn. J. Appl. Phys. 27 (1988) L587.ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 1989

Authors and Affiliations

  • Atsuhiro Kunishige
    • 1
  • Hiroshi Yoshikawa
    • 1
  • Toshihiko Anno
    • 1
  • Itsuhiro Fujii
    • 1
  • Hiroshi Daimon
    • 1
  • Shizuka Yoshii
    • 2
  1. 1.Ube Research LaboratoryUbe Industries, Ltd.Ube, 755Japan
  2. 2.Corporate Research & DevelopmentUbe Industries, Ltd.Minato-ku, Tokyo, 107Japan

Personalised recommendations