Nonesterified Fatty Acid Metabolism and Membrane Disorders in Myocardial Ischemia and Reperfusion

  • Robert S. Reneman
  • Frits W. Prinzen
  • Marc Van Bilsen
  • Wim Engels
  • Ger J. Van der Vusse


Under normal circumstances, 40%–60% of the circulatory non esterified fatty acids (NEFAs) are extracted from the heart in a single transit time [1]. The majority of NEFAs are oxidized in the mitochondria for energy delivery. Such NEF As as arachidonic acid, linoleic acid, and docosahexaenoic acid are mainly incorporated into phospholipids, a major constituent of cell membranes. In this respect, species differences and the effect of nutrition have to be appreciated. For example, in the dog, myocyte membranes mainly consist of arachidonic acid and linoleic acid, while membrane lipids of rat myocytes mainly consist of arachidonic acid and docosahexaenoic acid.


Arachidonic Acid Myocardial Fatty Acid Nonesterified Fatty Acid Free Arachidonic Acid High Relative Increase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Opie LH, Owen P, Riemersma RA (1973) Relative rates of oxidation of glucose and free fatty acids by ischaemic and non-ischaemic myocardium after coronary artery ligation in the dog. Eur J Clin Invest 3: 419–435PubMedCrossRefGoogle Scholar
  2. 2.
    Van der Vusse GJ, Roemen THM, Prinzen FW, Coumans WA, Reneman RS (1982) Uptake and tissue content of fatty acids in dog myocardium under normoxic and ischemic conditions. Circ Res 50: 538–546PubMedGoogle Scholar
  3. 3.
    Van der Vusse GJ, Reneman RS (1984) The myocardial non-esterified fatty acid controversy. J Mol Cell Cardiol 16: 677–682PubMedCrossRefGoogle Scholar
  4. 4.
    Van der Vusse GJ, Roemen THM, Reneman RS (1985) The content of nonesterified fatty acids in rat myocardial tissue. A comparison between the Dole and Folch extraction procedures. J Mol Cell Cardiol 17: 527–531PubMedCrossRefGoogle Scholar
  5. 5.
    Weishaar R, Sarma JSM, Maruyama Y, Fischer R, Bing RJ (1977) Regional blood flow, contractility and metabolism in early myocardial infarction. Cardiology 62: 2–20PubMedCrossRefGoogle Scholar
  6. 6.
    Prinzen FW, Van der Vusse GJ, Arts T, Roemen THM, Coumans WA, Reneman RS (1984) Accumulation of nonesterified fatty acids in ischemic canine myocardium. Am J Physiol 247: H264–H272PubMedGoogle Scholar
  7. 7.
    Chien KR, Han A, Sen A, Buja LM, Willerson JT (1984) Accumulation of unesterified arachidonic acid in ischemic canine myocardium. Circ Res 54: 313–322PubMedGoogle Scholar
  8. 8.
    Borst P, Loos JA, Christ EJ, Slater EC (1962) Uncoupling activity of long-chain fatty acids. Biochim Biophys Acta 62: 509–518PubMedCrossRefGoogle Scholar
  9. 9.
    Lamers JMJ, Hulsmann WC (1977) Inhibition of (Na+ + K+)-stimulated ATPase of heart by fatty acids. J Mol Cell Cardiol 9: 343–346PubMedCrossRefGoogle Scholar
  10. 10.
    Reneman RS, Prinzen FW, Engels E, Van Bilsen M, Van der Vusse GJ (1987) Arachidonic acid metabolism during myocardial ischemia. Progr Appl Microcirc 12: 152–169Google Scholar
  11. 11.
    Jennings RB, Hawkins JE, Lowe JE, Hill ML, Klotman S, Reimer KA (1978) Relation between high energy phosphate and lethal injury in myocardial ischemia in the dog. Am J Path 92: 187–215PubMedGoogle Scholar
  12. 12.
    Chien KR, Sen A, Reynolds R, Chang A, Kim C, Gunn MD, Buja LM, Willerson JT (1985) Release of arachidonate from membrane phospholipids in cultured neonatal rat myocardial cells during adenosine triphosphate depletion. J Clin Invest 75: 1770–1780PubMedCrossRefGoogle Scholar
  13. 13.
    Borgers M, Thone F, Xhonneux R, Fiameng W (1982) Shifts of calcium in the ischemic myocardium. A structural analysis. In: Wauquier A, et al. (eds) Protection of tissues against hypoxia, Elsevier, Amsterdam, pp 365–375Google Scholar
  14. 14.
    Van der Vusse GJ, Prinzen FW, Reneman RS (1987) Disturbances in myocardial lipid homeostasis during ischemia and reperfusion. In: Sideman S, Beyar R (eds) Activation, metabolism and perfusion of the heart, Nijhoff, Dordrecht, pp 665–682CrossRefGoogle Scholar
  15. 15.
    Van Bilsen M, Engels W, Willemsen PHM, Coumans WA, Van der Vusse GJ, Reneman RS (1987) Arachidonic acid accumulation and eicosanoid synthesis during ischemia and reperfusion in isolated rat hearts. Progr Appl Microcirc 12: 236–243Google Scholar
  16. 16.
    Van der Vusse GJ, Van Bilsen M, Reneman RS (in press) Impairment of lipid metabolism in ischemic and reperfused myocardial tissue. In: Sideman S (ed) Analysis and simulation of mechanics, perfusion and electrical performance in ischemic heart disease, CRC Press, Boca RatonGoogle Scholar
  17. 17.
    Post JA, Leunissen-Bijvelt J, Ruigrok TJC, Verkleij AJ (1985) Ultrastructural changes of sarcolemma and mitochondria in the isolated rabbit heart during ischemia and reperfusion. Biochim Biophys Acta 845: 119–123PubMedCrossRefGoogle Scholar
  18. 18.
    Wetzel MG, Scow RO (1984) Lipolysis and fatty acid transport in rat heart: electron microscopic study. Am J Physiol 246: C467–C485PubMedGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1988

Authors and Affiliations

  • Robert S. Reneman
  • Frits W. Prinzen
  • Marc Van Bilsen
  • Wim Engels
  • Ger J. Van der Vusse
    • 1
  1. 1.Departments of Physiology and MicrobiologyUniversity of LimburgMaastrichtThe Netherlands

Personalised recommendations