Oxygen Delivery and Microcirculation in the Brain

  • Dietrich W. Lübbers


When the oxygen pressure of the venous blood of the brain decreases below 20 Torr, the O2 supply of the human brain becomes so insufficient that unconsciousness occurs [1], although at 20 Torr the blood still contains about one-third of the arterial O2 concentration. However, because of its low oxygen pressure, this amount of oxygen is obviously useless for the O2 supply. Opitz and Schneider [2] took these results as a sign for the brain tissue oxygen being mainly transported by diffusion and reported model calculations using Krogh’s model of tissue oxygen supply.


Oxygen Pressure Oxygen Delivery Brain Cortex Needle Electrode Brain Tissue Oxygen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Opitz E, Palme F (1944) Darstellung und Hohenanpassung im Gebirge durch Sauerstoffmangel: III. Mitt. Graduierung der Hohenkrankheit durch das Elektroencephalogramm. Pflügers Arch 248: 330CrossRefGoogle Scholar
  2. 2.
    Opitz E, Schneider M (1950) Über die Sauerstoffversorgung des Gehirns und den Mechanismus von Mangelwirkungen. In: Krayer O, Lehnartz E, v. Muralt A, Rein FH (eds) Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie, vol. 46. Springer, Berlin—Göttingen—Heidelberg, pp 126–261CrossRefGoogle Scholar
  3. 3.
    Rémond A (1948) Aspects physiopathologiques de l’oxygène cortical. Revue Neurologique 80: 579–588Google Scholar
  4. 4.
    Davies PW, Bronk DW (1957) Oxygen tension in mammalian brain. Fed Proc 16: 689–692PubMedGoogle Scholar
  5. 5.
    Silver IA (1965) Some observations on the cerebral cortex with an ultramicro, membrane-covered, oxygen electrode. Med Electron Bioi Engng 3: 377–387CrossRefGoogle Scholar
  6. 6.
    Lübbers DW (1968) The oxygen pressure field of the brain and its significance for the normal and critical oxygen supply of the brain. In: Lübbers DW, Luft UC, Thews G, Witzleb E (eds) Oxygen transport in blood and tissue. Thieme, Stuttgart, pp 124–139Google Scholar
  7. 7.
    Whalen WJ, Ganfield R, Nair P (1970) Effects of breathing O2 or O2 + CO2 and of the injection of neurohumors on the Po2 of cat cerebral cortex. Stroke 1: 194–200PubMedCrossRefGoogle Scholar
  8. 8.
    Metzger H (1973) Geometric considerafions in modeling oxygen transport processes in tissue. Adv Exp Med Biol 37B: 761–772Google Scholar
  9. 9.
    Smith RH, Guilbeau EJ, Renau DD (1977) The oxygen tension field within a discrete volume of cerebral cortex. Microvasc Res 13: 233–240PubMedCrossRefGoogle Scholar
  10. 10.
    Baumgärtl H, Lubbers DW (1983) Microcoaxial needle sensor for polarographic measurement of local O2 pressure in the cellular range of living tissue. Its construction and properties. In Gnaiger E, Forstner H (eds) Polarographic oxygen sensors. Springer, Berlin—Heidelberg, pp 37–65Google Scholar
  11. 11.
    Bär T (1980) The vascular system of the cerebral cortex. In: Brodal A, v. Limborgh J, Ortmann R, Töndury G (eds) Advances in anatomy, embryology and cell biology, vol. 59. Springer, Berlin—Heidelberg—New YorkGoogle Scholar
  12. 12.
    Nair P, Whalen WJ, Buerk D (1975) Po2 of cat cerebral cortex: Response to breathing N2 and 100% O2. Microvasc Res 9: 158–165PubMedCrossRefGoogle Scholar
  13. 13.
    Metzger H, Heuber S, Steinacker A, Strüber J (1978) Staining of Po2 measuring points demonstrated for the rat brain cortex. Adv Exp Med Biol 94: 49–55Google Scholar
  14. 14.
    Lübbers DW (1969) The meaning of the tissue oxygen distribution curve and its measurement by means of Pt electrodes. Progr Resp Res: 3: 112–123Google Scholar
  15. 15.
    Stosseck K (1970) Hydrogen exchange through the pial vessel wall and its meaning for the determination of the local cerebral blood flow. Pflügers Arch 320: 111–119PubMedCrossRefGoogle Scholar
  16. 16.
    Duling BR, Kuschinsky W, Wahl M (1979) Measurements of the perivascular Po2 and tissue Po2in the vicinity of the pial vessels of the cat. Pflügers Arch 383: 29–34PubMedCrossRefGoogle Scholar
  17. 17.
    Ivanov KP, verry AN, Vovenko EP, Samoilov MO, Semionov DG (1982) Direct measurements of oxygen tension at the surface of arterioles, capillaries and venules of the cerebral cortex. Pflügers Arch 393: 118–120PubMedCrossRefGoogle Scholar
  18. 18.
    Ivanov, Kislayokov Yu Ya, Samoilov MO (1979) Microcirculation and transport of oxgyen to neurons of the brain. Microvasc Res 18: 434–441PubMedCrossRefGoogle Scholar
  19. 19.
    Eintrei C, Lund N (1986) Effects of increases in the inspired oxgyen fraction on brain surface oxgyen pressure fields in pig and man. Acta Anaesthesiol Scand 30: 194–198PubMedCrossRefGoogle Scholar
  20. 20.
    Kessler M, Lübbers DW (1966) Aufbau und Anwendungsmoglichkeit verschiedener Po2-Elektroden. Pflügers Arch 291: 82Google Scholar
  21. 21.
    Heinrich U, Hoffmann J, Baumgärtl H, Yu B, Lübbers DW (1985) Oxygen supply of the blood-free perfused guinea pig brain at three different temperatures. Adv Exp Med Biol 191: 77–84PubMedGoogle Scholar
  22. 22.
    Schultheiss R, Assad F, Leniger-Follert E, Pfeiffer G, Wassmann H, Wüllenweber R (1985) Measurement of tissue Po2 on the brain surface: Clinical application of the polarographic method. In: Hartmann A, Hoyer S (eds) Cerebral blood flow and metabolism measurement. Springer, Berlin-Heidelberg, pp 487–490CrossRefGoogle Scholar
  23. 23.
    Oshino N, Sugano T, Oshino R, Chance B (1974) Mitochondrial function under hypoxic conditions: The steady states of cytochrome a,a3 and their relation to mitochondrial energy states. Biochim Biophys Acta 368: 298–310PubMedCrossRefGoogle Scholar
  24. 24.
    Lübbers DW (1981) Tissue oxgyen supply and critical oxygen pressure. Adv Physiol Sci 25: 3–11Google Scholar
  25. 25.
    Hempel FG, Jöbsis FF, LaManna JL, Rosenthal MR, Saltzman HA (1977) Oxidation of cerebral cytochrome aa3 by oxygen plus carbon dioxide at hyperbaric pressures. J Appl Physiol 43: 873–879PubMedGoogle Scholar
  26. 26.
    Clark A Jr, Clark PAA (1985) Local oxygen gradients near isolated mitochondria. Biophys J 48: 931–938PubMedCrossRefGoogle Scholar
  27. 27.
    Hilberman M, Subramanian VH, Haselgrove J, Cone JB, Egan JW, Gyulai L, Chance B (1984) In vivo time-resolved brain phosphorus nuclear magnetic resonance. J Cerebr Blood Flow Metab 4: 334–342CrossRefGoogle Scholar
  28. 28.
    Dora E, Kovach AGB (1987) Role of hypoxia and acetylcholine in the regulation of cerebral blood flow. Adv Exp Med Biol 215: 237–248PubMedGoogle Scholar
  29. 29.
    Lübbers DW (1966) Methods of measuring oxygen tensions of blood and organ surfaces. In: Payne JP, Hill DW (eds) Oxygen measurements in blood and tissues. Churchill, London, pp 103–132Google Scholar
  30. 30.
    Lübbers DW, Stosseck K (1970) Quantitative Bestimmung der lokalen Durchblutung durch elektrochemisch im Gewebe erzeugten Wasserstoff. Naturwissenschaften 57: 311PubMedCrossRefGoogle Scholar
  31. 31.
    Stosseck K, Lübbers DW (1970) Determination of microflow of the cerebral cortex by means of electrochemically generated hydrogen. In: Russel RWR (ed) Brain and blood flow. Pittman, London, pp 80–84Google Scholar
  32. 32.
    Leniger-Follert E Lübbers DW (1976) Behavior of microflow and local Po2 of the brain cortex during and after direct electrical stimulation. Pflügers Arch 366: 39–44PubMedCrossRefGoogle Scholar
  33. 33.
    Leniger-Follert E, Lübbers DW (1973) Mikrozirkulation und Sauerstofftransport im Gehirn. Verh Dtsch Ges Kreislaufforsch 39: 22–27Google Scholar
  34. 34.
    Klein B, Kuschinsky W, Schröck H, Vetterlein F (1986) Interdependency of local capillary density, blood flow, and metabolism in rat brains. Am J Physiol 251: H1333–H1340PubMedGoogle Scholar
  35. 35.
    Clark LC Jr, Misrahy G, Fox RP (1958) Chronically implanted polarographic electrodes. J Appl Physiol 13: 85–91PubMedGoogle Scholar
  36. 36.
    Manil J, Bourgain RH, v. Waeyenberge M, Colin F, Blockeel E, De Mey B, Coremans J, Paternoster R (1984) Properties of the spontaneous fluctuations in cortical oxygen pressure. Adv Exp Med Biol 169: 231–239PubMedGoogle Scholar
  37. 37.
    Leniger-Follert E (1985) Oxygen supply and microcirculation of the brain cortex. Adv Exp Med Biol 191: 3–19PubMedGoogle Scholar
  38. 38.
    Leniger-Follert E, Lübbers DW (1975) Interdependence of capillary flow and regional blood flow of the brain. In: Langfitt TW, McHenry LC Jr, Reivich M, Wollmann H (eds) Cerebral circulation and metabolism. Springer, New York, pp 46–48CrossRefGoogle Scholar
  39. 39.
    Temes G, Lantos J, Török B (1985) Correlations between the quantity of cerebral flow, brain surface Po2 and EEG in the dog. Res Exp Med 185: 121–129CrossRefGoogle Scholar
  40. 40.
    Chan R, Leniger-Follert E (1983) Effect of isovolemic hemodilution on oxygen supply and electrocorticogram in cat brain during focal ischemia and in normal tissue. Int J Microcirc Clin Exp 2: 297–313PubMedGoogle Scholar
  41. 41.
    Wiernsperger N, Gygax P, Danzeisen M (1978) Cortical Po2 distribution during oligemic hypotension and its pharmacological modifications. Arzneim Forsch Drug Res 28(I): 768–770Google Scholar
  42. 42.
    Messmer K, Sunder-Plassmann L, Jesch F, Görnandt L, Sinagowitz E, Kessler (1973) Oxgyen supply to the tissues during limited normovolemic hemodilution. Res Exp Med 159: 152–166CrossRefGoogle Scholar
  43. 43.
    Grote J, Schubert R (1982) Regulation of cerebral perfusion and Po2 in normal and edematous brain tissue. In: Loeppky JA, Riedesel ML (eds) Oxygen transport to human tissues. Elsevier North Holland, Amsterdam pp 169–178Google Scholar
  44. 44.
    Metzger H, Erdmann W, Thews G (1971) Effect of short periods of hypoxia, hyperoxia, and hypercapnia on brain O2 supply. J Appl Physiol 31: 751–759PubMedGoogle Scholar
  45. 45.
    Leniger-Follert E, Lübbers DW, Wrabetz W (1975) Regulation of local tissue Po2 of the brain cortex at different arterial O2 pressures. Pflügers Arch 359: 81–95PubMedCrossRefGoogle Scholar
  46. 46.
    Lübbers DW, Leniger-Follert E (1978) Capillary flow in the brain cortex during changes in oxygen supply and state of activation. In: Cerebral vascular smooth muscle and its control. Ciba Foundation Symposium 56. Elsevier, Excerpta Medica, North Holland, Amsterdam, pp 21–47Google Scholar
  47. 47.
    Burgess DW (1975) The regulation of brain tissue oxygen tension under conditions of increased barometric pressures. In: Payne JP, Hill DW (eds) Oxygen measurements in biology and medicine. Butterworths, London, pp 217–230Google Scholar
  48. 48.
    Rubanyi G, Paul RJ (1985) Two distinct effects of oxgyen on vascular tone in isolated porcine coronary arteries. Circ Res 56: 1–10PubMedGoogle Scholar
  49. 49.
    Grote J, Zimmer K, Schubert R (1981) Effects of severe arterial hypocapnia on regional blood flow regulation, tissue Po2 and metabolism in the brain cortex of cats. Pflügers Arch 391: 195–199PubMedCrossRefGoogle Scholar
  50. 50.
    Leniger-Follert E, Hossmann K-A (1979) Simultaneous measurements of microflow and evoked potentials in the somatomotor cortex of the cat brain during specific sensory activation. Pflügers Arch 380: 85–89PubMedCrossRefGoogle Scholar
  51. 51.
    Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83: 1140–1144PubMedCrossRefGoogle Scholar
  52. 52.
    Metzger H (1978) The influence of electrical stimulation on cortex Po2 level in the rat brain. Adv Exp Med Biol 94: 713–720Google Scholar
  53. 53.
    Leniger-Follert E (1984) Mechanisms of regulation of cerebral microflow during bicuculline-induced seizures in anaesthetized cats. J Cereb Blood Flow Metab 4: 150–165PubMedCrossRefGoogle Scholar
  54. 54.
    Caspers H, Speckmann E-J (1972) Cerebral pO2, pCO2 and pH: Changes during convulsive activity and their significance for spontaneous arrest of seizures. Epilepsia 13: 699–725PubMedCrossRefGoogle Scholar
  55. 55.
    Urbanics R, Leniger-Follert E, Lübbers DW (1978) Time course of changes of extracellular H+ and K+ activities during and after direct electrical stimulation of the brain cortex. Pflügers Arch 378: 47–53PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1988

Authors and Affiliations

  • Dietrich W. Lübbers
    • 1
  1. 1.Max-Planck-Institut für SystemphysiologieDortmund 1Federal Republic of Germany

Personalised recommendations