Cerebral Hemoconcentration Following Blood Flow Reduction in the Gerbil

  • Hiroaki Naritomi
  • Masahiro Sasaki
  • Shi-Yao Bao
  • Yoshihiro Kuriyama
  • Tohru Sawada


In minute vessels, the average speed of red blood cells (RBC) is greater than that of plasma. This velocity difference leads to reduction in hematocrit (Ht) of minute vessels (Fahraeus effect), and for this reason, the Ht measured in organs is generally lower than large-vessel Ht [1].


Mean Arterial Blood Pressure Cerebral Blood Volume Cereb Blood Flow Carotid Artery Occlusion Cerebral Blood Flow Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fahreus R (1929) The suspension stability of the blood. Phys Rev 9: 241–274Google Scholar
  2. 2.
    Everett NB, Simmons B, Lasher EP (1956) Distribution of blood (Fe59) and plasma (I131) volumes of rats determined by liquid nitrogen freezing. Cir Res 4: 419–424Google Scholar
  3. 3.
    Oldendorf WH, Kitano M, Shimizu S, Oldendorf SZ (1965) Hematocrit of the human cranial blood pool. Cir Res 17: 532–539Google Scholar
  4. 4.
    Sklar FH, Burke EF-Jr, Langfitt TW (1968) Cerebral blood volume: values obtained with 51Cr-labeled red blood cells and RISA. J Appl Phys 24: 79–82Google Scholar
  5. 5.
    Cremer JE, Seville MP (1983) Regional brain blood flow, blood volume, and hematocrit values in the adult rat. J Cereb Blood Flow Metabol 3: 254–256CrossRefGoogle Scholar
  6. 6.
    Lammertsma AA, Brooks DJ, Beaney RP, Turton DR, Kensett MJ, Heather JD, Marshall J, Jones T (1984) In vivo measurement of regional cerebral hematocrit using positron emission tomography. J Cereb blood Flow Metabol 4: 317–322CrossRefGoogle Scholar
  7. 7.
    Sakai F, Nakazawa K, Tazaki Y, Ishii K, Hino H, Igarashi H, Kanda T (1985) Regional cerebral blood volume and hematocrit measured in normal human volunteers by single-photon emission tomography. J Cereb Blood Flow Metabol 5: 207–213.CrossRefGoogle Scholar
  8. 8.
    Sakurada O, Kennedy C, Jehle J, Brown JP, Carbin GL, Sokoloff L (1978) Measurement of local cerebral blood flow with [14C]-iodo-antipyrine. Am J Physiol; 234: H59–H66PubMedGoogle Scholar
  9. 9.
    Gibson JG, Seligman AM, Peakock WC, Aub JC, Fine J, Evans RD (1946) The distribution of red blood cells and plasma in large and minute vessels of the normal dog, determined by radioactive isotopes of iron and iodide. J Clin Invest 25: 848–857CrossRefGoogle Scholar
  10. 10.
    Pappenheimer JR, Kinter WB (1956) Hematocrit ratio of blood within mammalian kidney and its significance for renal hemodynamics. Am J Phys 185: 377–390Google Scholar
  11. 11.
    Meyer JS (1958) Localized changes in properties of the blood and effects of anticoagulant drugs in experimental cerebral infarction. New Engl J Med 258: 151–159PubMedCrossRefGoogle Scholar
  12. 12.
    Mchedlishvili G, Varazashvili M (1981) Red cell/plasam ratio in blood flowing in microvascular beds under control and ischemic conditions. Micro Res 21: 302–307CrossRefGoogle Scholar
  13. 13.
    Cokelet GR (1976) Macroscopic rheology and tube flow of human blood. In: Grayson J, Zingg W (eds) Microcirculation, vol. 1. Plenum, New York, pp-9–31Google Scholar
  14. 14.
    Gaehtgens KH, Albrecht KH, Kreutz F (1978) Fahreus effect and cell screening during tube flow of human blood: I. Effect of variation of flow. Biorheology 15: 147–154PubMedGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1988

Authors and Affiliations

  • Hiroaki Naritomi
    • 1
  • Masahiro Sasaki
    • 1
  • Shi-Yao Bao
    • 1
  • Yoshihiro Kuriyama
    • 2
  • Tohru Sawada
    • 2
  1. 1.Cerebral Circulation LaboratoryNational Cardiovascular CenterSuita, Osaka 565Japan
  2. 2.Department of NeurologyNational Cardiovascular CenterSuita, Osaka 565Japan

Personalised recommendations