Skip to main content

Actions of Calcium Antagonists on Smooth Muscle Cells of Vascular Tissues

Current Knowledge on Actions of Ca Antagonists

  • Chapter
Essential Hypertension

Summary

The actions of Ca antagonists, organic compounds which prevent the influx of Ca, were studied in various regions of vascular beds excised from several species using the micro-electrode and whole-cell voltage clamp methods. In relation to the actions of Ca antagonists on the membrane, the effects of these drugs on mechanical responses evoked by the Ca spike and depolarizations induced by high K or agonists were studied using the isometric tension recording method. In vascular smooth muscle, most Ca antagonists inhibited the voltage-dependent Ca channel to a greater extent than the receptor-operated Ca channel. However, some Ca antagonists inhibited not only the influx of Ca but also the Ca mobilization in smooth muscle cells. Since individual Ca antagonists possess different features on inhibition of the smooth muscle activity, we tentatively classified the Ca antagonists from their actions on the Ca-dependent and receptor-operated Ca channels, sarcoplasmic reticulum, and contractile proteins. The inhibitory actions of Ca antagonists on cardiac muscle are briefly discussed in comparison to those on vascular smooth muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelstein RS, Eisenberg E (1980) Regulation and kinetics of the actin-myosin-ATP interaction. Ann Rev Biochem 49:921–956

    Article  PubMed  CAS  Google Scholar 

  2. Aksoy MO, Mras S, Kamm KE, Murphy RA (1983) Ca2+, cAMP and changes in myosin phosphorylation during contraction of smooth muscle. Am J Physiol 245: c255-c270

    PubMed  CAS  Google Scholar 

  3. Bean BP (1985) Two kinds of calcium channels in canine artial cells. J Gen Physiol 86:1–30

    Article  PubMed  CAS  Google Scholar 

  4. Bean BP, Nowycky MD, Tsien RW (1983) Electrical estimates of Ca channel density in heart cell membranes. Biophys J 41:295 a

    Google Scholar 

  5. Berridge JM, Irvine RF (1984) Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    Article  PubMed  CAS  Google Scholar 

  6. Boger GT, Gengo PJ, Luchowski EM, Siegel H, Triggle DJ, Janis RA (1982) High affinity binding of a calcium channel antagonist to smooth and cardiac muscle. Biochem Biophys Res Commun 120:481–485

    Google Scholar 

  7. Bolton TB (1979) Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev 59:606–718

    PubMed  CAS  Google Scholar 

  8. Brum G, Flockerzi V, Hofmann F, Osterrieder W, Trautwein W (1983) Injection of catalytic subunit of c-AMP-dependent protein kinase into isolated cardiac myocytes. Pflugers Arch 398:147–154

    Article  PubMed  CAS  Google Scholar 

  9. Brum G, Osterrieder A, Trautwein W (1984) β-Adrenergic increase in the calcium conductance of cardiac myocytes studies with the patch clamp. Pflugers Arch 401:111–118

    Article  PubMed  CAS  Google Scholar 

  10. Cosnier D, Duchenne-Marullaz P, Rispat G, Streichenberger G (1977) Cardiovascular pharmacology of bepridil (1[3 isobutoxy 2 (benzylphenyl) amino] propyl pyrrolidine hydrochloride) a new potential anti-anginal compound. Arch Int Pharmacodyn 225:113–151

    Google Scholar 

  11. Curtis BM, Catterall WA (1983) Solubilization of the calcium antagonist receptor from rat brain, J Biol Chem 258:7280–7283

    PubMed  CAS  Google Scholar 

  12. Ehara T, Kaufman R (1978) The voltage- and time dependent effects of (-)-verapamil on the slow inward current in isolated cat ventricular myocardium. J Pharmacol Exp Ther 207:49–55

    PubMed  CAS  Google Scholar 

  13. Epstein PM, Fiss K, Hachisu R, Andrenyak DM (1982) Interaction of calcium antagonists with cyclic AMP phosphodiesterases and calmodulin. Biochem Biophys Res Commun 105: 1142–1149

    Article  PubMed  CAS  Google Scholar 

  14. Fabiato A, Fabiato F (1979) Calcium and excitation-contraction coupling. Ann Rev Physiol 41:473–484

    Article  CAS  Google Scholar 

  15. Flaim SF, Zelis R (1982) Calcium Blockers: Mechanisms of Action and Clinical Applications. Urban and Schwarzenberg, Baltimore

    Google Scholar 

  16. Fleckenstein A (1964) Die Bedeutung der energiereichen Phosphate für Kontraktilität und Tonus des Myokards. Verh Dtsch Ges Inn Med 70:81–99

    PubMed  CAS  Google Scholar 

  17. Fleckenstein A (1977) Specific pharmacology of calcium in myocardium, cardiac pacemaker and vascular smooth muscle. Ann Rev Pharmacol Toxicol 17:149–166

    Article  CAS  Google Scholar 

  18. Fleckenstein A (1983) Calcium Antagonism in Heart and Smooth Muscle. Wiley, New York

    Google Scholar 

  19. Fosset M, Jaimovich E, Delpont E, Lazdunski M (1983) [3H] nitrendipine receptors in skeletal muscle properties and preferential localization in transverse tubules. J Biol Chem 258:6086–6092

    PubMed  CAS  Google Scholar 

  20. Fujioka M, Kuriyama H (1986) Eperison, an anti-spastic agent, possesses vasodilating actions on smooth muscle cells of the guinea-pig basilar artery. J Pharmacol Exp Ther 235:757–763

    Google Scholar 

  21. Fujiwara S, Kuriyama H (1983) Nicardipine actions on smooth muscle cells and neuromusclar transmission in guinea-pig basilar artery. J Pharmcol Exp Ther 225:447–455

    CAS  Google Scholar 

  22. Fujiwara S, Kuriyama H (1984) Hemolysate-induced contraction in smooth muscle cells of the guinea pig basilar artery. Stroke 15:503–510

    Article  PubMed  CAS  Google Scholar 

  23. Gallizi JP, Fosset M, Lazdunski M (1984) [3H]verapamil binding sites in skeletal muscle transverse tubule membranes. Biochem Biophys Res Commun 118:239–245

    Article  Google Scholar 

  24. Godfraind T, Kaba A (1969) Blockade or reversal of contraction induced by calcium and adrenaline in deporalized arterial smooth muscle. Br J Pharmacol 36:549–560

    PubMed  CAS  Google Scholar 

  25. Godfraind T (1985) Calcium and Cell Physiology. Springer, Berlin Heidelberg New York Tokyo, pp 204–226

    Book  Google Scholar 

  26. Hartshorne DJ, Gorecka A (1980) Biochemistry of the contractile proteins of smooth muscle. In: Handbook of physiology, The cardiovascular system, vol 2: Vascular smooth muscle. Am Physiol Soc, Bethesda, pp 93–120

    Google Scholar 

  27. Hashimoto T, Hirata M, Itoh T, Kanmura Y, Kuriyama H (1985) Inositol 1,4,5-triphosphate activates pharmacomechanical coupling in smooth muscle of the rabbit mesenteric artery. J Physiol (Lond) 370:605–618

    Google Scholar 

  28. Hescheler J, Pelzer D, Trube G, Trautwein W (1982) Does the organic calcium channel blocker D600 act from inside or outside on the cardiac cell membrane? Pflugers Arch 393:287–291

    Article  PubMed  CAS  Google Scholar 

  29. Hess P, Lansman JB, Tsien RW (1984) Different modes of Ca channel gating behavior favored by dihydropyridine Ca agonists and antagonists. Nature 311:538–544

    Article  PubMed  CAS  Google Scholar 

  30. Hume JR (1985) Comparative interactions of organic Ca++ channel antagonists with myocardial Ca ++ and K+ channels. J Pharmacol Exp Ther 234:134–140

    PubMed  CAS  Google Scholar 

  31. Ishikawa S, Izumi H, Satoh S, Kanmura Y, Itoh T (1985) Regional differences in the actions of verapamil and isosorbide dinitrate on rabbit and dog vascular smooth muscle. Naunyn-Schmiedeberg’s Arch Pharmacol 331:376–383

    Article  CAS  Google Scholar 

  32. Itoh T, Kajiwara M, Kitamura K, Kuriyama H (1981) Effects of vasodilator agents on smooth muscle cells of the coronary artery of the pig. Br J Pharmacol 74:455–468

    PubMed  CAS  Google Scholar 

  33. Itoh T, Izumi H, Kuriyama H (1982a) Mechanisms of relaxation induced by activation of β-adrenoceptors in smooth muscle cells of guinea-pig mesenteric artery. J Physiol (Lond) 326:475–493

    CAS  Google Scholar 

  34. Itoh T, Kajiwara M, Kitamura K, Kuriyama H (1982b) Roles of stored calcium on the mechanical response evoked in smooth muscle cells of the porcine coronary artery. J Physiol (Lond) 322:107–125

    CAS  Google Scholar 

  35. Itoh T, Kuriyama H, Suzuki H (1982c) Effects of chlorpromazine on the electrical and mechanical properties of intact and skinned muscle cells of guinea-pig mesenteric artery. Br J Pharmacol 75:513–523

    PubMed  CAS  Google Scholar 

  36. Itoh T, Kanmura Y, Kuriyama H, Suzuki H (1984) Nisoldipine-induced relaxation in intact and skinned smooth muscles of rabbit coronary arteries. Br J Pharmacol 83:243–258

    PubMed  CAS  Google Scholar 

  37. Itoh T, Kanmura Y, Kuriyama H, Sasaguri T (1985) Nitroglycerine- and isoprenaline-induced vasodilation: assessment from the actions of cyclic nucleotide. Br J Pharmacol 84:393–406

    PubMed  CAS  Google Scholar 

  38. Kamm KE, Stull JT (1985) The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Ann Rev Pharmacol Toxicol 25:593–620

    Article  CAS  Google Scholar 

  39. Kanaya S, Arlock BG Katzung BG, Hondeyhem LM (1983) Diltiazem and verapamil preferentially block inactivated cardiac calcium channels. J Mol Cell Cardiol 15:145–148

    Article  PubMed  CAS  Google Scholar 

  40. Kanmura Y, Itoh T, Suzuki H, Ito Y, Kuriyama H (1983a) Effects of nifedipine on smooth muscle cells of the rabbit mesenteric artery. J Pharmacol Exp Ther 226:238–248

    PubMed  CAS  Google Scholar 

  41. Kanmura Y, Itoh T, Suzuki H, Ito Y, Kuriyama H (1983b) Nifedipine actions on smooth muscle cells of pig and rabbit skinned and intact coronary arteries. In: Hashimoto K, Kawai C (eds) Asian pacific adalat symposium. New therapy of ischemic heart disease and hypertension. Medical Tribune, Tokyo, pp 3–30

    Google Scholar 

  42. Kass RS, Tsien RW (1975) Multiple effects of calcium antagonists on plateau currents in cardiac Purkinje fibers. J Gen Physiol 66:169–192

    Article  PubMed  CAS  Google Scholar 

  43. Kerrick WGL, Hoar PE (1981) Inhibition of smooth muscle tension by cyclic AMP-dependent protein kinase. Nature 292:253–255

    Article  PubMed  CAS  Google Scholar 

  44. Kohlhardt M, Baver B, Krause H, Fleckenstein A (1972) Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibers by the use of specific inhibitors. Pflugers Arch 355:309–322

    Article  Google Scholar 

  45. Kuriyama H, Ito Y, Suzuki H, Kitamura K, Itoh T (1982) Factors modifying contraction-relaxation cycle in vascular smooth muscles. Am J Physiol 243: H641-H662

    PubMed  CAS  Google Scholar 

  46. Lee KS, Tsien RW (1983) Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature 302:790–794

    Article  PubMed  CAS  Google Scholar 

  47. Levin RM, Weiss B (1976) Mechanism by which psychotropic drugs inhibit adenosine cyclic 3’5’monophosphate phosphodiesterase of brain. Mol Pharmacol 12:581–589

    PubMed  CAS  Google Scholar 

  48. Makita Y, Kanmura Y, Itoh T, Suzuki H, Kuriyama H (1983) Effect of nifedipine derivatives on smooth muscle cells and neuro-muscular transmission in the rabbit mesenteric artery. Naunyn-Schmiedeberg’s Arch Pharmacol 324:302–312

    Article  CAS  Google Scholar 

  49. McCans JL, Lindenmayer GE, Munson EG, Evans RW, Schwarz A (1974) A dissociation of positive staircase (Bowditch) from ouabain-induced positive inotropism; use of verapamil. Circ Res 35; 439–447

    PubMed  CAS  Google Scholar 

  50. McCleskey EW (1985) Calcium channel and intracellular calcium release are pharmacologically different in frog skeletal muscle. J Physiol (Lond) 361:231–249

    CAS  Google Scholar 

  51. McDonald TF, Pelzer D, Trautwein W (1980) On the mechanism of slow calcium channel block in heart. Pflugers Arch 385:175–179

    Article  PubMed  CAS  Google Scholar 

  52. McDonald TF, Pelzer D, Trautwein W (1984a) Cat ventricular muscle treated with D600: Effects on calcium and potassium currents. J Physiol (Lond) 352:203–216

    CAS  Google Scholar 

  53. McDonald TF, Pelzer D, Trautwein W (1984b) Cat ventricular muscle treated with D600: Characteristics of calcium channel block and unblock. J Physiol (Lond) 352:217–241

    CAS  Google Scholar 

  54. Miller JR, Silver PJ, Stull JT (1983) The role of myosin light chain kinase phosphorylation in β adrenergic relaxation of tracheal smooth muscle. Mol Pharmacol 24:235–242

    PubMed  CAS  Google Scholar 

  55. Nagao T, Suzuki H, Kuriyama H (1986) Effects of flunarizine on smooth muscle cells and on neuromuscular transmission in the rabbit basilar and ear artery. Naunyn-Schmiedeberg’s Arch Pharmacol (in press)

    Google Scholar 

  56. Nakayama K, Kasuya Y (1980) Selective abolition of Ca-dependent responses of smooth and cardiac muscles by flunarizine. Japan J Pharmacol 30:731 –742

    Article  CAS  Google Scholar 

  57. Nawrath H, Ten Eick RE, McDonald TF, Trautwein W (1977) On the mechanism underlying the action of D600 on slow inward current and tension in mammalian myocardium. Circ Res 40:408–414

    PubMed  CAS  Google Scholar 

  58. Nilius B, Hess P, Lansman JB, Tsien RW (1985) A novel type of cardiac calcium channel in ventricular cells. Nature 316:443–446

    Article  PubMed  CAS  Google Scholar 

  59. Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 308:693–698

    Article  PubMed  CAS  Google Scholar 

  60. Noma A, Trautwein W (1978) Relaxation of the ACh-induced potassium current in the rabbit sinoatrial node cell. Pflugers Arch 377:193–200

    Article  PubMed  CAS  Google Scholar 

  61. Ohya Y, Terada K, Kitamura K, Kuriyama H (1986) Membrane currents recorded from a fragment of rabbit intestinal smooth muscle. Am J Physiol (in press)

    Google Scholar 

  62. Osterrieder W, Brum G, Hescheler J, Trautwein W, Flockerzi V, Hofmann F (1982) Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Ca2+ current. Nature 298:576–578

    Article  PubMed  CAS  Google Scholar 

  63. Pang DC, Sperelakis N (1982) Differential actions of calcium antagonists on calcium binding to cardiac sarcolemma. Eur J Pharmacol 81:403–409

    Article  PubMed  CAS  Google Scholar 

  64. Pang DC, Sperelakis N (1984) Uptake of calcium antagonistic drugs into muscles as related to their lipid solubilities. Biochem Pharmacol 33:821–826

    Article  PubMed  CAS  Google Scholar 

  65. Rasmussen H, Barrett PQ (1984) Calcium messenger system: An integrated view. Physiol Rev 64:938–984

    PubMed  CAS  Google Scholar 

  66. Reuter H (1983) Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301:569–574

    Article  PubMed  CAS  Google Scholar 

  67. Ruegg JC, Sparrow MP, Mrwa U (1981) Cyclic AMP-mediated relaxation of chemically skinned fibers of smooth muscle. Pflugers Arch 390:198–201

    Article  PubMed  CAS  Google Scholar 

  68. Saida K, van Breemen C (1983) Inhibiting effect of diltiazem on intracellular Ca2+ release in vascular smooth muscle. Blood Vessels 20:105–108

    PubMed  CAS  Google Scholar 

  69. Sasaguri T, Hirata M, Kuriyama H (1985) Dependence of Ca2+ of the activities of phosphati-dylinositol 4,5-bisphosphate phosphodiesterase and inositol 1,4,5-triphosphate in smooth muscles of the porcine coronary artery. Biochem J 231:497–503

    PubMed  CAS  Google Scholar 

  70. Scheid CR, Honeyman TW, Fay FS (1979) Mechanism of β-adrenergic relaxation of smooth muscle. Nature 277:32–36

    Article  PubMed  CAS  Google Scholar 

  71. Suematsu E, Hirata M, Hashimoto T, Kuriyama H (1984) Inositol 1,4,5-triphosphate releases calcium from intracellular store sites in skinned single cells of porcine coronary artery. Biochem Biophys Res Commun 120:481–485

    Article  PubMed  CAS  Google Scholar 

  72. Suprenant AM, Neild TO, Holman ME (1983) Effects of nifedipine on nerve-evoked action potentials and consequent contractions in rat tail artery. Pflugers Arch 396:342–349

    Article  Google Scholar 

  73. Suzuki H, Itoh T, Kuriyama H (1982) Effects of diltiazem on smooth muscles and neuromuscular junction in the mesenateric artery. Am J Physiol 242: H325-H336

    PubMed  CAS  Google Scholar 

  74. Suzuki H, Itoh T, Kuriyama H (1986) Mechanisms of the bepridil-induced vasodilation of the rabbit mesenteric artery. J Pharmacol Exp Ther 235:749–756

    Google Scholar 

  75. Tanaka T, Ohmura T, Hidaka H (1982) Hydrophobic interaction of the Ca2+-calmodulin complex with calmodulin antagonists. Mol Pharmacol 22:403–407

    PubMed  CAS  Google Scholar 

  76. Trautwein W, Brum G, Osterrieder W (1985) Effects of cAMP or catalytic subunit of protein kinase on cardiac calcium channels. In: Proceedings of the 16th FEBS congress, part B. pp 385–390

    Google Scholar 

  77. Trautwein W, Pelzer D, McDonald TF (1983) Interval- and voltage-dependent effects of the calcium channel blocking agents D600 and AQA 39 on mamalian ventricular muscle. Circ Res 52 (Suppl I) 60–68

    CAS  Google Scholar 

  78. Van Belle H (1981) R24571: A potent inhibitor of calmodulin-activated enzymes. Cell Calcium 2:483–494

    Article  Google Scholar 

  79. Van Belle H (1984) The effects of drugs on calmodulin and its interaction with phosphodiesterase. In: Greengard P et al. (eds) Advances in cyclic nucleotide and protein phosphorylation research, vol 17. Raven, New York

    Google Scholar 

  80. Van Neuten JM, Van Beek J, Janssen AA (1978) Effect of flunarizine on calcium-induced responses of peripheral vascular smooth muscle. Arch Int Pharmacodyn Ther 232:42–52

    Google Scholar 

  81. Van Neuten JM, Vanhoutte PM (1981) Selectivity of calcium-antagonism and serotonin-antagonism with respect to venous and arterial tissues. Angiology 32:476–484

    Article  Google Scholar 

  82. Volgi M, Shaafi RI, Epstein PM, Andrenyak DM, Feinstein MB (1981) Local anaesthetics, mepcrine and propranolol are antagonists of calmodulin. Proc Natl Acad Sci USA 78: 795–799

    Article  Google Scholar 

  83. Weiss GB (1981) New Perspectives on Calcium Antagonists. American Physiological Society, Maryland

    Google Scholar 

  84. Weiss GB, Prozialeck WC, Wallace TL (1982) Interaction of drugs with calmodulin. Biochem Pharmacol 31:2217–2226

    Article  PubMed  CAS  Google Scholar 

  85. Wit AL, Cranefield PF (1974) Effect of verapamil on the sinoatrial and atrioventricular nodes of the rabbit and the mechanism by which it arrests reentrant atrioventricular nodal tachycardia. Circ Res 35:413–425

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Ohya, Y. et al. (1986). Actions of Calcium Antagonists on Smooth Muscle Cells of Vascular Tissues. In: Aoki, K. (eds) Essential Hypertension. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68048-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68048-2_7

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68050-5

  • Online ISBN: 978-4-431-68048-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics