Skip to main content

Altered Vascular Calcium Metabolism As a Possible Cause of Increased Blood Pressure in Essential Hypertension

  • Chapter
Book cover Essential Hypertension

Summary

In human essential hypertension, there is some limited evidence for vascular EC coupling abnormalities, and abnormalities are also found in the SHR. There is little information from human studies as to whether such abnormalities play a role in the development of hypertension, but from rat studies the available evidence does not support a direct connection between EC coupling abnormalities and increased blood pressure, although the possibility cannot be excluded that the increased sensitivity is a substrate upon which other factors may act. Further work is required, particularly using human isolated vascular preparations, to delineate more precisely the role of vascular abnormalities in the pathogenesis of essential hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lund-Johansson P (1980) Haemodynamics in essential hypertension. State of the art review. Clin Sci 59:343s–354s

    Google Scholar 

  2. Ferrone RA, Walsh GM, Tsuchiya M, Frohlieh ED (1979) Comparison of hemodynamics in conscious spontaneous and renal hypertensive rats. Am J Physiol 236: H403-H408

    PubMed  CAS  Google Scholar 

  3. Julius S, Esler M (eds) (1976) The Nervous System in Arterial Hypertension. Thomas, Springfield

    Google Scholar 

  4. Sakamaki T, Johnson JA, Zielgler DW, Koivunen DG, Siripaisarnpipat S, Fowler WL, Payne CG (1984) Pressor hyperresponsiveness in saline-infused rabbits. Hypertension 6:503–510

    PubMed  CAS  Google Scholar 

  5. Mulvany MJ (1985) Role of vascular structure in blood pressure development of the SHR. J Hypertens (in press)

    Google Scholar 

  6. Okamoto K, Aoki K (1963) Development of a strain of spontaneously hypertensive rats. Jpn Circ J 27:283–293

    Article  Google Scholar 

  7. Trippodo NC, Frohlich ED (1981) Similarities of genetic (spontaneous) hypertension. Man and rat. Circ Res 48:309–319

    PubMed  CAS  Google Scholar 

  8. Ljungman S, Aurell M, Hartford M, Wikstrand J, Berglund G (1983) Effects of subpressor doses of angiotensin II on renal hemo-dynamics in relation to blood pressure. Hypertension 5:368–374

    PubMed  CAS  Google Scholar 

  9. Robinson BF, Dobbs RJ, Bayley S (1982) Response of forearm resistance vessels to verapamil and sodium nitroprusside in normotensive and hypertensive men: evidence for a functional abnormality of vascular smooth muscle in primary hypertension. Clin Sci 63:33–42

    PubMed  CAS  Google Scholar 

  10. Sivertsson R (1970) The hemodynamic importance of structural vascular changes in essential hypertension. Acta Physiol Scand Suppl 343

    Google Scholar 

  11. Moulds RFW (1980) Reduced responses to noradrenaline of isolated digital arteries from hypertensives. Clin Expt Pharmacol Physiol 7:505–508

    Article  CAS  Google Scholar 

  12. Wyse DG (1984) Relationship of blood pressure to the responsiveness of an isolated human artery to selected agonists and to electrical stimulation. J Cardiovasc Pharmacol 6:1083–1091

    PubMed  CAS  Google Scholar 

  13. Aalkjaer C, Danielsen H, Johannesen P, Pedersen EB, Rasmussen A, Mulvany MJ (1985) Abnormal vascular function and morphology in preeclampsia: a study of isolated resistance vessels. Clin Sci 69:477–482

    PubMed  CAS  Google Scholar 

  14. Mulvany MJ (1983) Do resistance vessel abnormalities contribute to the elevated blood pressure of spontaneously-hypertensive rats? A review of some of the evidence. Blood Vessels 20:1–22

    PubMed  CAS  Google Scholar 

  15. Folkow B, Hallback M, Lundgren Y, Weiss L (1970) Background of increased flow resistance and vascular reactivity of spontaneously hypertensive rats. Acta Physiol Scand 80:93–106

    Article  PubMed  CAS  Google Scholar 

  16. Bohr DF (1974) Reactivity of vascular smooth muscle from normal and hypertensive rats: effect of several cations. Fed Proc 33:127–129

    PubMed  CAS  Google Scholar 

  17. Lais LT, Shaffer RA, Brody MJ (1974) Neurogenic and humoral factors controlling vascular resistance in the spontaneously hypertensive rat. Circ Res 35:764–774

    PubMed  CAS  Google Scholar 

  18. Collis MG, Vanhoutte PM (1977) Vascular reactivity of isolated perfused kidneys from male and female spontaneously hypertensive rats. Circ Res 41:759–767

    PubMed  CAS  Google Scholar 

  19. Schömig A, Dietz R, Rascher W, Luth JB, Mann JFE, Schmidt M, Weber J (1978) Sympathetic vascular tone in spontaneous hypertension in rats. Klin Wochenschr 56 (Suppl I): 131–138

    Article  PubMed  Google Scholar 

  20. Berecek KH, Stocker M, Gross F (1980) Changes in renal vascular reactivity at various stages of deoxycorticosterone hypertension in rats. Circ Res 46:619–624

    PubMed  CAS  Google Scholar 

  21. Hermsmeyer K (1976) Electrogenesis of increased norepinephrine sensitivity of arterial vascular muscle in hypertension. Circ Res 38:362–267

    PubMed  CAS  Google Scholar 

  22. Webb RC, Vanhoutte PM, Bohr DF (1981) Adrenergic neurotransmission in vascular smooth muscle from spontaneously hypertensive rats. Hypertension 3:93–103

    PubMed  CAS  Google Scholar 

  23. Mulvany MJ, Nilsson H, Nyborg N, Mikkelsen E (1982) Are isolated femoral resistance vessels or tail arteries good models for the hindquarter vasculature of spontaneously hypertensive rats. Acta Physiol Scand 116:275–283

    Article  PubMed  CAS  Google Scholar 

  24. Mulvany MJ, Aalkjaer C, Christensen J (1980) Changes in noradrenaline sensitivity and morphology of arterial resistance vessels during development of high blood pressure in spontaneously hypertensive rats. Hypertension 2:664–671

    PubMed  CAS  Google Scholar 

  25. Whall CW, Myers MM, Halpern W (1980) Norepinephrine sensitivity, tension development and neuronal uptake in resistance arteries from spontaneously hypertensive and normotensive rats. Blood Vessels 17:1–15

    PubMed  CAS  Google Scholar 

  26. Gray SD, Demey JG (1985) Vascular reactivity in neonatal spontaneously hypertensive rats. Prog Appl Microcirc 8:173–180

    Google Scholar 

  27. Zsoter TT, Sirko S, Wolchinsky C, Kadar D, Endrenyi L (1981) Adrenergic activity in arteries of spontaneously hypertensive rats. Can J Physiol Pharmacol 59:1104–1107

    Article  PubMed  CAS  Google Scholar 

  28. Wiegman DL, Joshua IG, Morff RJ, Harris PD, Miller FN (1979) Microvascular responses to norepinephrine in renovascular and spontaneously hypertensive rats. Am J Physiol 236: H545-H548

    PubMed  CAS  Google Scholar 

  29. Bohlen HG (1979) Arteriolar closure mediated by hyperresponsiveness to norepinephrine in hypertensive rats. Am J Physiol 236:H157-H164

    PubMed  CAS  Google Scholar 

  30. Strecker RB, Hubbard WC, Michelakis AM (1975) Dissociation constant of the norepine-phrine-receptor complex in normotensive and hypertensive rats. Circ Res 37:658–663

    PubMed  CAS  Google Scholar 

  31. Horwitz D, Clineschmidt BV, van Buren JM, Ommaya AK (1974) Temporal arteries from hypertensive and normotensive man. Circ Res 34–35 (Suppl I): 115–109

    Google Scholar 

  32. Noon JP, Rice PJ, Baldessanne RJ (1978) Calcium leakage as a cause of high resting tension in vascular smooth muscle from SHR. Proc Nat Acad Sci 75:1605

    Article  PubMed  CAS  Google Scholar 

  33. Fitzpatrick DF, Szentivanyi A (1980) The relationship between increased myogenic tone and hyporesponsiveness in vascular smooth muscle of spontaneously hypertensive rats. Clin Exp Hypertens 2:1023–1037

    Article  PubMed  CAS  Google Scholar 

  34. Zsoter TT, Wolchinsky C, Henein NF, Ho LC (1977) Calcium kinetics in the aorta of SHR. Cardiovasc Res 11:353–357

    Article  PubMed  CAS  Google Scholar 

  35. Pedersen OL, Mikkelsen E, Andersson KE (1978) Effects of extracellular calcium on potassium and noradrenaline induced contractions in the aorta of spontaneously hypertensive rats—increased sensitivity to nifedipine. Acta Pharmacol Toxicol 43:137–144

    Article  Google Scholar 

  36. Mulvany MJ (1983) Arterial abnormalities in spontaneously hypertensive rats (abstract). Proceedings of the International Union of Physiological Sciences 15:14

    Google Scholar 

  37. Winquist RJ, Bohr DF (1983) Structural and functional changes in cerebral arteries from spontaneously hypertensive rats. Hypertension 5:292–297

    PubMed  CAS  Google Scholar 

  38. Kawaguchi Y, Aoki K, Yamamoto M, Hotta K (1982) Calcium-induced tension development and effect of calcium antagonist in mesenteric arteries from spontaneously hypertensive rats. In: Rascher W, Clough D, Ganten D (eds) Hypertensive mechanisms. Schattauer, Stuttgart, pp 264–267

    Google Scholar 

  39. Devine CE, Somlyo AV, Somlyo AP (1972) Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscle. J Cell Biol 52:690–718

    Article  PubMed  CAS  Google Scholar 

  40. Mulvany MJ, Nyborg N (1980) An increased calcium sensitivity of mesenteric resistance vessels in young and adult spontaneously hypertensive rats. Br J Pharmacol 71:585–596

    PubMed  CAS  Google Scholar 

  41. Nilsson H, Mulvany MJ (1981) Prolonged exposure to ouabain eliminates the greater noradre-naline-dependent calcium sensitivity of resistance vessels in spontaneously hypertensive rats. Hypertension 3:691–697

    PubMed  CAS  Google Scholar 

  42. Pegram BL, Ljung B (1981) Neuroeffector function of isolated portal vein from spontaneously hypertensive and Wistar-Kyoto rats: dependence on external calcium concentration. Blood Vessels 18:89–99

    PubMed  CAS  Google Scholar 

  43. Folkow B, Hallback M, Jones JV, Sutter M (1977) Dependence of external calcium for noradrenaline contractility of resistance vessels in spontaneously hypertensive and renal hypertensive rats, as compared with normotensive controls. Acta Physiol Scand 101:84–97

    Article  PubMed  CAS  Google Scholar 

  44. Bolton TB (1979) Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev 59:606–718

    PubMed  CAS  Google Scholar 

  45. Wuytack F, Raeymakers L, de Schutter G, Casteels R (1982) Demonstration of the phospho-rylated intermediates of the Ca+-transport ATPase in a microsomal fraction and in a (Ca2+ + Mg2+)-ATPase purified from smooth muscle by means of a calmodulin affinity chromatography. Biochim Biophys Acta 693:45–52

    Article  PubMed  CAS  Google Scholar 

  46. Kwan CY, Triggle CR, Grover AK, Lee RMKW, Daniel EE (1983) An analytical approach to the preparation and characterization of subcellular membranes from canine mesenteric arteries. Preparative Biochem 13:275–314

    Article  CAS  Google Scholar 

  47. Blaustein MP (1977) Sodium ions, calcium ions, blood pressure regulation and hypertension: a reassessment and a hypothesis. Am J Physiol 232:C165-C173

    PubMed  CAS  Google Scholar 

  48. Droogmans G, Casteels R (1979) Sodium and calcium interactions in vascular smooth muscle cells of the rabbit ear artery. J Gen Physiol 74:57–70

    Article  PubMed  CAS  Google Scholar 

  49. Hermsmeyer K (1983) Sodium pump hyperpolarization-relaxation in rat caudal artery. Fedn Proc 42:246–252

    CAS  Google Scholar 

  50. Mulvany M J, Aalkjær C, Petersen TT (1984) Intracellular sodium, membrane potential and contractility in rat mesenteric small arteries. Circ Res 54:740–749

    PubMed  CAS  Google Scholar 

  51. Harder DR, Sperelakis N (1979) Action potentials induced in guinea pig arterial smooth muscle by tetraethylammonium. Am J Physiol 237: C75-C80

    PubMed  CAS  Google Scholar 

  52. Nilsson H, Ljung B, Sjoblom N, Wallin BG (1985) The influence of the sympathetic impulse pattern on contractile responses of rat mesenteric arteries and veins. Acta Physiol Scand 123:303–309

    Article  PubMed  CAS  Google Scholar 

  53. Thoren P, Ricksten SE (1979) Recordings of renal and splanchnic sympathetic nervous activity in normotensive and spontaneously hypertensive rats. Clin Sci 57:197s–199s

    PubMed  Google Scholar 

  54. Droogmans G, Raeymakers L, Casteels R (1977) Electro- and pharmacomechanical coupling in the smooth muscle cells of the rabbit ear artery. J Gen Physiol 70:129–148

    Article  PubMed  CAS  Google Scholar 

  55. Mulvany MJ, Nilsson H, Flatman JA (1982) Role of membrane potential in the response of rat small mesenteric arteries to exogenous noradrenaline stimulation. J Physiol 332:363–373

    PubMed  CAS  Google Scholar 

  56. Aoki K, Ikeda N, Yamashita K, Tazumi K, Sato I, Hotta K (1974) Cardiovascular contraction in spontaneously hypertensive rat: Ca2+ interaction of myofibrils and subcellular membrane of heart and arterial smooth muscle. Jpn Circ J 38:1115–1121

    Article  PubMed  CAS  Google Scholar 

  57. Webb RC, Bhalla RC (1976) Altered calcium sequestration by sub-cellular fractions of vascular smooth muscle from spontaneously hypertensive rats. J Mol Cell Cardiol 8:651

    Article  PubMed  CAS  Google Scholar 

  58. Moore L, Hurwitz L, Davenport GR, Landon EJ (1975) Energy-dependent calcium uptake activity of microsomes from the aorta of normal and hypertensive rats. Biochim Biophys Acta 413:432–443

    Article  PubMed  CAS  Google Scholar 

  59. Kwan CY, Belbeck L, Daniel EE (1979) Abnormal biochemistry of vascular smooth muscle plasma membrane as an important factor in the initiation and maintenance of hypertension in rats. Blood Vessels 16:259–268

    PubMed  CAS  Google Scholar 

  60. Nyborg N, Byg Hansen J, Mulvany MJ (1985) Effect of felodipine on resistance vessels from spontaneously hypertensive and normotensive rats. J Cardiovasc Pharmacol (in press)

    Google Scholar 

  61. Nyborg N, Mulvany MJ (1984) Effect of felodipine, a new dihydropyridine vasodilator on contractile responses to potassium, noradrenaline, and calcium in mesenteric resistance vessels of the rat. J Cardiovasc Pharmacol 6:499–505

    Article  PubMed  CAS  Google Scholar 

  62. Cauvin C, Saida K, van Breemen C (1982) Effects of calcium antagonists on calcium fluxes in resistance vessels. J Cardiovasc Pharmacol 4: S287-S290

    Article  PubMed  Google Scholar 

  63. Rapp JP (1983) A paradigm for identification of primary genetic causes of hypertension in rats. Hypertension 5 (Suppl 1): I-198–I-203

    Google Scholar 

  64. Lais LT, Brody MJ (1978) Vasoconstrictor hyper-responsiveness: an early pathogenic mechanism in the spontaneously hypertensive rat. Eur J Pharmacol 17:177–189

    Article  Google Scholar 

  65. Pang CCY, Sutter MC (1981) Effect of chronic treatment of spontaneously hypertensive rats with D600. Hypertension 3:657–663

    PubMed  CAS  Google Scholar 

  66. Nyborg NCB, Mulvany MJ (1985) Lack of effect of antihypertensive treatment with felodipine on cardiovascular structure of young spontaneously hypertensive rats. Cardiovasc Res 19:528–536

    Article  PubMed  CAS  Google Scholar 

  67. Jespersen LT, Nyborg NCB, Pedersen OL, Mikkelsen EO, Mulvany MJ (1985) Cardiac mass and peripheral vascular structure in hydralazine-treated spontaneously hypertensive rats. Hypertension 7:734–741

    PubMed  CAS  Google Scholar 

  68. Rapp JP (1982) A genetic locus (Hyp-2) controlling vascular smooth muscle response in spontaneously hypertensive rats. Hypertension 4:459–467

    PubMed  CAS  Google Scholar 

  69. Mulvany MJ, Korsgaard N (1983) Correlations and otherwise between blood pressure, cardiac mass and resistance vessel characteristics in hypertensive, normotensive and hyperten-sive/normotensive hybrid rats. J Hypertension 1:235–244

    Article  CAS  Google Scholar 

  70. Byg Hansen J (1985) Calcium sensitivity in mesenteric resistance vessels from spontaneously hypertensive and control Wistar-Kyoto rats, demonstrated with mechanical experiments and the use of ouabain, felodipine, skinning and denervation. Research Prize, Aarhus University, Aarhus

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Mulvany, M.J. (1986). Altered Vascular Calcium Metabolism As a Possible Cause of Increased Blood Pressure in Essential Hypertension. In: Aoki, K. (eds) Essential Hypertension. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68048-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68048-2_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68050-5

  • Online ISBN: 978-4-431-68048-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics