Skip to main content

Use of Isolated Membranes of Smooth Muscle to Study Calcium Channels

  • Chapter

Summary

Studies of binding to isolated uterine muscle membranes show that dihydropyridine Ca-channel antagonists bind specifically to plasma membranes. Furthermore, other studies show that binding of these antagonists correlates with their functional effects in the same tissue. However, the agents have no effect detected to date on Ca fluxes into or out of isolated vesicles from the same tissue. Thus, it is possible that Ca2+ channels are inactivated during or after membrane isolation and that correlations between binding and functional antagonism by these antagonists may be irrelevant. However, other studies using an irreversible ligand of the dihydropyridine type for Ca channels applied to isolated cells found a similar locus of binding to plasma membranes, but binding characteristics were not studied. Thus, the relationship between binding of these antagonists to plasmalemmal sites and their functional effects needs further study.

Supported by the Medical Research Council of Canada, the Ontario Heart Foundation, and Miles Laboratories Inc., New Haven, Conn.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal DK, Daniel EE (1985) Two distinct populations of [3H]prazosin and [3H]yohimbine binding sites in the plasma membranes of rat mesenteric artery. J Pharmacol 233:195–203

    CAS  Google Scholar 

  2. Bolger GT, Gengo P Klockowski R, Luchowski E, Siegel H, Janis RA, Triggle AM, Triggle DN (1983) Characterization of the binding of Ca2+-channel antagonist, [3H]nitrendipene, to guinea pig ileal smooth muscle. J Pharmacol 225:291–309

    CAS  Google Scholar 

  3. Bolton JB (1979) Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev 59:606–718

    PubMed  CAS  Google Scholar 

  4. Bolton JB (1985) Calcium exchange in smooth muscle. In: Parratt JR (ed) Control and manipulation of calcium movement. Raven Press, New York, pp 147–168

    Google Scholar 

  5. Cauvin C, Loutzenhiser R, Van Breemen C (1983) Mechanism of calcium antagonist-induced vasodilation. Ann Rev Pharmacol Toxicol 23:373–396

    Article  CAS  Google Scholar 

  6. Crankshaw DJ, Branda LA, Matlib MA, Daniel EE (1978) Localization of the oxytocin receptor in the plasma membrane of rat myometrium. Eur J Biochem 86:481–486

    Article  PubMed  CAS  Google Scholar 

  7. Crankshaw DJ, Janis RA, Daniel EE (1977) The effects of Ca2+ antagonists on Ca2+ accumulation by subcellular fractions of rat myometrium. Can J Physiol Pharmacol 55:1028–1032

    Article  PubMed  CAS  Google Scholar 

  8. Daniel EE, Crankshaw D, Kwan CY (1979) Intracellular sources of Ca for activation of smooth muscle. In: Kalsner S (ed) Trends in autonomic pharmacology, vol 1. Urban and Schwarzenberg, Baltimore, pp 443–484

    Google Scholar 

  9. Daniel EE, Grover AK, Kwan CY (1982) Isolation and properties of plasma membrane from smooth muscle. Fed Proc 41:2898–2904

    PubMed  CAS  Google Scholar 

  10. Daniel EE, Grover AK, Kwan CY (1983) Calcium. In: Stephens NL (ed) Biochemistry of smooth muscle, vol III. CRC Press, Boca Raton, pp 1–88

    Google Scholar 

  11. Fosset M, Jarmovich E, Delpont E, Lazdunski M (1983) [3H]nitrendipine receptors in skeletal muscle. Properties and preferential localization in transverse tubules. J Biol Chem 258:6086–6092

    PubMed  CAS  Google Scholar 

  12. Grover AK (1984) Analysis of data on efflux of radioactive ions from isolated membrane vesicles. Am J Physiol 247: R445-R448

    PubMed  CAS  Google Scholar 

  13. Grover AK, Kwan CY, Crankshaw J, Crankshaw DJ, Garfield RE, Daniel EE (1980) Characteristics of calcium transport and binding by rat myometrium plasma membrane subfractions. Am J Physiol 239: C66-C69.

    PubMed  CAS  Google Scholar 

  14. Grover AK, Kwan CY, Daniel EE (1981) Na-Ca exchange in rat myometrium membrane vesicles highly enriched in plasma membranes. Am J Physiol 240:C175-C182

    PubMed  CAS  Google Scholar 

  15. Grover AK, Kwan CY, Daniel EE (1982) Ca2+-concentration dependence of Ca uptake by rat myometrium plasma membrane enriched fraction. Am J Physiol 242: C278-C282

    PubMed  CAS  Google Scholar 

  16. Grover AK, Kwan CY, Rangachari PK, Daniel EE (1983) Na-Ca exchange in smooth muscle plasma membrane enriched fraction. Am J Physiol 244:C158-C165

    PubMed  CAS  Google Scholar 

  17. Grover AK, Kwan CY, Daniel EE, Ahmad S, Ramlal T, Oakes P, Triggle DJ (1985) Subcellular distribution of dihydropyridine isothiocyanate in guinea pig ileal smooth muscle. Arch Int Pharmacodyn Therap 273:74–82

    CAS  Google Scholar 

  18. Grover AK, Kwan CY, Kostka P, Daniel EE (1985) Binding and degradation of angiotensin II by mesenteric artery subfractions. Eur J Pharmacol 112:137

    Article  PubMed  CAS  Google Scholar 

  19. Grover AK, Kwan CY, Luckowski E, Daniel EE, Triggle DJ (1984) Subcellular distribution of [3H]nitrendipine binding in smooth muscle. J Biol Chem 259:2223–2226

    PubMed  CAS  Google Scholar 

  20. Grover AK, Oakes PJ (1985) Ca-channel antagonist binding and pharmacology of rat uterine smooth muscle. Life Sciences 37:2187–2192

    Article  PubMed  CAS  Google Scholar 

  21. Janis RA, Triggle DJ (1983) New developments in Ca2+-channel antagonists. J Med Chem 26:775–785

    Article  PubMed  CAS  Google Scholar 

  22. Kao CY, McCullough JR (1975) Ionic currents in the uterine smooth muscle. J Physiol (Lond) 246:1–36

    CAS  Google Scholar 

  23. Kitabgi P, Kwan CY, Fox JET, Vincent JP (1984) Characterization of neurotensin binding to rat gastric fundus smooth muscle receptor sties. Peptide 5:917–923

    CAS  Google Scholar 

  24. Kwan CY, Garfield RE, Daniel EE (1979) An improved method for the isolation of plasma membranes from rat mesenteric arteries. J Mol Cell Cardiol 11:639–659

    Article  PubMed  CAS  Google Scholar 

  25. Kwan CY, Sakai Y, Grover AK, Lee RMKW (1982) Isolation and characterization of plasma membrane fraction from gastric fundus smooth muscle of the rat. Mol Physiol 2:107–120

    CAS  Google Scholar 

  26. Kwan CY, Triggle CR, Grover AK, Lee RMKW, Daniel EE (1983) An analytical approach to the preparation and characterization of subcellular membranes from canine mesenteric arteries. Prep Biochem 13:275–314

    Article  PubMed  CAS  Google Scholar 

  27. Kwan CY, Triggle CR, Grover AK, Lee RMKW, Daniel EE (1984) Subcellular fractionation of canine aortic smooth muscle: subcellular distribution of Ca2+-handling properties. J Mol Cell Cardiol 16:747–764

    Article  PubMed  CAS  Google Scholar 

  28. Matlib MA, Crankshaw J, Garfield RE, Crankshaw DJ, Kwan CY, Branda LA, Daniel EE (1979) Characterization of membrane fractions and isolation of purified plasma membrane from rat myometrium. J Biol Chem 254:1834–1839

    PubMed  CAS  Google Scholar 

  29. Mironneau J (1973) Excitation-contraction coupling in voltage clamped uterine smooth muscle. J Physiol (Lond) 233:127–141

    CAS  Google Scholar 

  30. Mironneau J (1974) Voltage clamp analysis of the tonic currents in the uterine smooth muscle using the double sucrose gap method. Pfluger Arch 352:197–210

    Article  CAS  Google Scholar 

  31. Rosenberger LB, Ticku MK, Triggle DK (1979) The effects of Ca2+ antagonists on mechanical responses and Ca2+ movements in guinea pig ileal longitudinal muscle. Can J Physiol Pharmacol 57:333–347

    Article  PubMed  CAS  Google Scholar 

  32. Triggle CR, Agrawal DK, Bolger GT, Daniel EE, Kwan CY, Luchowski EM, Triggle DJ (1982) Calcium-channel antagonist binding to isolated vascular muscle membranes. Can J Physiol Pharmacol 60:1738–1741

    Article  PubMed  CAS  Google Scholar 

  33. Triggle DJ, Janis RA (1985) Nitrendipine binding sites and mechanisms of action. In: Seriabine A, Vaniv S, Deck K (eds) Nitrendipine. Urban and Schwarzenberg, Munich, pp 33–52

    Google Scholar 

  34. Ventner JC, Fraser CM, Schaber JS, Jung CY, Bolger G, Triggle DJ (1983) Molecular properties of the slow inward Ca channel. J Biol Chem 258:9344–9348

    Google Scholar 

  35. Williams LJ, Jones LR (1983) Specific binding of the calcium antagonist [3H]nitrendipine to subcellular fractions isolated from canine myocardium. J Biol Chem 258:5344–5347

    PubMed  CAS  Google Scholar 

  36. Yousif FB, Bolger GT, Ruzycky A, Triggle DJ (1984) Ca2+-channel antagonist actions in bladder smooth muscle: comparative pharmacologic and [3H]nitrendipine binding studies. Can J Physiol Pharmacol 63:453–462

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Kwan, C.Y., Grover, A.K., Daniel, E.E. (1986). Use of Isolated Membranes of Smooth Muscle to Study Calcium Channels. In: Aoki, K. (eds) Essential Hypertension. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68048-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68048-2_12

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68050-5

  • Online ISBN: 978-4-431-68048-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics