An Optimally Controlled Four-Node Quadrilateral Element for Reissner-Mindlin Plate

  • Li-Yong Tong
Conference paper


A four-node quadrilateral plate bending element of Reissner-Mindlin plate, which uses bilinear interpolations for both rotations and transverse deflection, has been developed by employing a technique similar to the quasi-conforming method. Success is achieved to control the hourglass modes produced by the employment of one-point quadrature in the implementation of the element U1. Numerical results for a variety of plate problems are presented to show the accuracy, the convergency and the efficiency of the present element.


Bilinear Interpolation Mindlin Plate Central Deflection Plate Problem Transverse Deflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.J.R. Hughes, R.L. Taylor & W. Kanoknuklchai, Int. J. Num. Meth. Engng, 11(1977) 1529–1547MATHCrossRefGoogle Scholar
  2. 2.
    T.J.R. Hughes, T.E. Tezduyar, J. Appl. Mech., 48(1981)587ADSMATHCrossRefGoogle Scholar
  3. 3.
    A. Tessler & T.J.R. Hughes, Comput. Meth. Appl. Mech. Engng, 39(1983) 311ADSMATHCrossRefGoogle Scholar
  4. 4.
    G. Prathap & S. Vinswanath, Int. J. Num. Meth. Engng, 19 (1983)31CrossRefGoogle Scholar
  5. 5.
    D. Kosloff & G. Frazier, Num. Anal. Geomech., 2(1978)52–57Google Scholar
  6. 6.
    T. Belytschko, C.S. Tsay & W.K. Liu, Comput. Meth. Appl. Mech., 29(1981) 313MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    T. Belytschko & C.s. Tsay, Int. J. Num. Engng, 19(1983)405–419MATHCrossRefGoogle Scholar
  8. 8.
    L.M. Tang, W.J. Chen & Y.X. Liu, ‘String net function approximation and quasi-conforming technique’,Proc. of the Int. Symp. on the Hybrid/Mixed Finite Element Methods, April, 2 (1980), 8–10, Atalanta, Georgis, U.S.A.Google Scholar
  9. 9.
    E.A. Armanios & H.M. Negm, Comput. Struct., 16(1983) 677MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Japan 1986

Authors and Affiliations

  • Li-Yong Tong
    • 1
  1. 1.Beijing Institute of Aeronautics and AstronauticsBeijingChina

Personalised recommendations