Three Dimensional Stress Distribution and Fracture Mechanics of Carbon/Epoxy Composite Laminates

  • K. Kageyama
  • M. Kikuchi
  • T. Kobayashi
  • T. Nishio
Conference paper


The sub-microscopic fracture processes of carbon/epoxy laminates (CFRP) are studied numerically using the three dimensional finite element method. Several kinds of single edge notched specimens, subjected to tensile load, are analyzed. The results are compared with those of experiments and fracture toughness value of CFRP with fiber breaking, Kcf, is estimated.


Fracture Toughness Fiber Orientation Composite Laminate Fiber Breaking Linear Fracture Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Ociai and P. W. M. Peters: Effects of notch length, specimen thickness, ply thickness and type of defects on the fracture behaviour of angle-ply graphite-epoxy composites. J. Mat. Sci., 17 (1982), p.2324ADSCrossRefGoogle Scholar
  2. 2.
    C. C. Poe, Jr.: A unifying strain criterion for fracture of fibrous composite laminates. Engng. Fract. Mech., 17 (1983), pl53CrossRefGoogle Scholar
  3. 3.
    C. Bathias, R. Esnault and J. Pellas: Application of fracture mechanics to graphite fibre-reinforced composites. Composites., 12–3 (1981) p.195CrossRefGoogle Scholar
  4. 4.
    P. W. M. Peters: On the increasing fracture toughness at increasing notch length of 0/90 and 0/±45/0 graphite/epoxy laminates, composites., 14–4 (1983) p.365CrossRefGoogle Scholar
  5. 5.
    K. Kageyama, K. Nonaka and S. Shimamura: A method of in-plane fracture toughness test for CFRP. ICCMV, San Diego (1985) p.391Google Scholar
  6. 6.
    M. Kikuchi and H. Miyamoto: The thickness effect of side grooved CT specimens. Int. J. Pres. Ves. & Piping., 16 (1984) p.1CrossRefGoogle Scholar
  7. 7.
    M. Kikuchi and H. Miyamoto: J integral evaluation of CT specimen. Bulletine of JSME, 27–233, Nov. (1984) p.2365CrossRefGoogle Scholar
  8. 8.
    M. Kikuchi and H. Miyamoto: Application of the J integral concept to microscopic fracture mechanics. Mech. Behaviour of Materials-N., (1984) p.1077Google Scholar
  9. 9.
    G. C. Sih, P. C. Paris and G. R. Irwin: On cracks in rectilinearly anisotropic bodies. Int. J. Frac. Mech., 1 (1965) p.189Google Scholar

Copyright information

© Springer Japan 1986

Authors and Affiliations

  • K. Kageyama
    • 1
  • M. Kikuchi
    • 2
  • T. Kobayashi
    • 2
  • T. Nishio
    • 2
  1. 1.Mechanical Engineering LaboratoryAIST, MITISakura-mura, Niihari-gun, Ibaraki, 305Japan
  2. 2.Department of Mechanical Engineering, Faculty of Science and TechnologyScience University of TokyoNoda-shi, Chiba, 278Japan

Personalised recommendations