Modification at the Reconstruction in Holographic Interferometry

  • W. Schumann
Conference paper


Holography exhibits the two following features in addition to other properties:

Firstly a hologram can store at a recording a wave field emanating from an object, which may be reconstructed by diffraction at any subsequent time by means of a reference wave, thereby creating an image of the object in space.

Secondly it is possible to modify the constructed wave field by shifting the reference source, by deforming the hologram, or by changing the wavelength of light, thereby changing the image resulting in aberration and virtual deformation.


Wave Field Reference Source Reference Wave Holographic Interferometry Optical Path Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Abramson N. (1974): Sandwich hologram interferometry: A new dimension in holographic comparison, Appl. Opt. 13: 2019–2025ADSGoogle Scholar
  2. [2]
    Abramson N. (1975): Sandwich hologram interferometry 2: Some practical calculations, Appl. Opt. 14: 981–984ADSGoogle Scholar
  3. [3]
    Abramson N. (1977): Sandwich hologram interferometry 4: Holographic studies of two milling machines, Appl. Opt. 17: 2521–2531ADSGoogle Scholar
  4. [4]
    Abramson N., Bjelkhagen H. (1978): Pulsed sandwich holography 2: Practical application, Appl. Opt. 17: 187–191ADSGoogle Scholar
  5. [5]
    Abramson N., Bjelkhagen H. (1979): Sandwich hologram interferometry 5: Measurement of in-plane displacement and compensation for rigid body motion, Appl. Opt. 18: 2870–2880ADSGoogle Scholar
  6. [6]
    Abramson N., Bjelkhagen H., Skande P. (1979): Sandwich holography for storing information interferometrically with a high degree of security, Appl. Opt. 18: 2017–2021ADSGoogle Scholar
  7. [7]
    Abramson N., Bjelkhagen H. (1980): Deformation, displacement and vibration investigations in manufacturing applications using a new hologram interferometra technique, Opt. Lasers Eng. 1: 51–68CrossRefGoogle Scholar
  8. [8]
    Abramson N. (1981): Making and Evaluation of Holograms, Academic Press, LondonGoogle Scholar
  9. [9]
    Amadesi S., D’Altorio A., Paoletti D. (1982): Sandwich holography for painting diagnostics, Appl. Opt. 21: 1889–1890ADSGoogle Scholar
  10. [10]
    Bjelkhagen H. (1977): Pulsed sandwich holography, Appl. Opt. 16: 1727–1731ADSGoogle Scholar
  11. [11]
    Churnside J.H., Yura H.T. (1982): Laser vector velocimetry: A 3-D measurement technique, Appl. Opt. 21: 845–850ADSGoogle Scholar
  12. [12]
    Cuche D., Schumann W. (1983): Fringe modification with amplification in holographic interferometry and application of this to determine strain and rotation, SPIE Vol. 398: 35–45Google Scholar
  13. [13]
    Cuche D., (1984): “Modification des franges d’interférence en interférométrie holographique appliquée à la détermination des dilatations et des rotations” Thesis ETH Zürich No. 7459Google Scholar
  14. [14]
    Dändliker R., Ineichen B., Mottier F.M. (1973): High resolution hologram interferometry by electronic phase measurement, Opt. commun. 9: 412–416ADSGoogle Scholar
  15. [15]
    Dändliker R., Ineichen B., Mottier F.M. (1974): Electric processing of holographic interferograms, in Digest of Papers, Int. Opt. Computing Conf. Zürich (IEEE, New York, 1974): 69–72Google Scholar
  16. [16]
    Dändliker R. Marom E., Mottier F.M. (1976): Two-reference-beam holographic interferometry, J. Opt. Soc. Am. 66: 23–30CrossRefADSGoogle Scholar
  17. [17]
    Dändliker R. (1980): “Heterodyne holographic Interferometry” in Progress in Optics, vol. XVII, chap. 1 (North-Holland, Amsterdam)Google Scholar
  18. [18]
    Dändliker R., Willemin J.F. (1981): Measuring microvibrations by heterodyne speckle interferometry, Opt. Lett. 6: 165–167CrossRefADSGoogle Scholar
  19. [19]
    Dändliker R. (1982): Measuring displacement, velocity and vibration by laser interferometry, in Optoelectronics in Engineering, ed. by W. Waidelich (Springer-Verlag, Berlin): 52–58Google Scholar
  20. [20]
    Decker A.J., Pao Y.H., Claspy P.C. (1978): Electronic heterodyne recording and processing of optical holograms using phase modulated reference waves, Appl. Opt. 17: 917–921ADSGoogle Scholar
  21. [21]
    De Larminat P.M., Wei R.P. (1976): A fringe-compensation technique for stress analysis by reflection holographic interferometry, Exp. Mech. 16: 241–248Google Scholar
  22. [22]
    Dirtoft I., Abramson N., Sandström U. (1979): Holographic measuring of deformations in complete upper dentures, SPIE Vol. 211: 106–110Google Scholar
  23. [23]
    Doty J.L., Hildebrand B.P. (1982): The use of sandwich hologram interferometry for nondestructive testing of nuclear reactor components, Opt. Eng. 21: 542–547Google Scholar
  24. [24]
    Dubas M., Schumann W. (1977): Contribution à l’étude théorique des images et des franges produites par deux hologrammes en sandwich, Opt. Acta 24: 1193–1209Google Scholar
  25. [25]
    Dudderar T.D., Doerries E.M. (1979): Application of holographic interferometry to real-time studies of heat effects in multilayer circuit boards, Mat. Evaluation 37: 41–50Google Scholar
  26. [26]
    Fischer B., Cronin-Golomb M., White J.O., Yariv A. (1981): Amplified reflection, transmission, and self-oscillation in real-time holography, Opt. Lett. 6: 519–521Google Scholar
  27. [27]
    Friesem A.A., Levy U. (1976): Fringe formation in two-wavelength contour holography, Appl. Opt. 16: 3009–3020ADSGoogle Scholar
  28. [28]
    Haines K.A., Hildebrand B.P. (1965): Contour generation by wavefront reconstruction, Phys. Lett. 19: 10–11Google Scholar
  29. [29]
    Hariharan P., Hegedus Z.S. (1976): Two-hologram interferometry: A simplified sandwich technique, Appl. Opt. 15: 848–849ADSGoogle Scholar
  30. [30]
    Hariharan P. (1977): Hologram Interferometry: Identification of the sign of surface displacements, Opt. Acta 24: 989–990Google Scholar
  31. [31]
    Hariharan P., Oreb B.F., Brown N. (1983): A digital system for real-time holographic stress analysis, SPIE Vol. 370: 189–194Google Scholar
  32. [32]
    Hariharan P., Oreb B.F., Brown N. (1983): Real-time holographic interferometry: A microcomputer system for the measurement of vector displacements, Appl. Opt. 22: 876–880ADSGoogle Scholar
  33. [33]
    Hildebrand B.P., Haines K.A. (1967): Multiple-wavelength and multiple-source holography applied to contour generation, J. Opt. Soc. Am. 57: 155–162CrossRefADSGoogle Scholar
  34. [34]
    Hoffer T.M., Fischer W. (1977): Abnahme von Werkzeugmaschinen mit einem Laser-Messystem, Feinwerktechnik & Messtechnik 85, (I): 229–235, (II): 343–359Google Scholar
  35. [35]
    Hsu T.R. (1974): Large-deformation measurements by real-time holographic interferometry, Exp. Mech. 14: 408–411Google Scholar
  36. [36]
    Ineichen B., Dändliker R., Mottier F.M. (1977): Accuracy and reproducibility of heterodyne holographic interferometry, in Applications of Holography and Optical Data Processing, ed. by E. Marom, A.A. Friesem, E. Wiener-Avnear (Pergamon Press, Oxford: 207–212Google Scholar
  37. [37]
    Krepelkova H. (1980): The application of holographic interferometry to the analysis of composite material structure, Opt. Appl. X: 91–97Google Scholar
  38. [38]
    Küchel F.M., Tiziani H.J. (1981): Real-time contour holography using BSO crystals, Opt. Commun. 38: 17–20ADSGoogle Scholar
  39. [39]
    Leung K.M., Lee T.C., Bernai E., Wyant J.C. (1979): Two-wavelength contouring with the automated thermoplastic holographic camera, SPIE Vol. 192: 184–189ADSGoogle Scholar
  40. [40]
    Menzel E. (1974): Comment to the methods of contour holography Optik 40: 557–559Google Scholar
  41. [41]
    Morizov N.V., Ostrovskii Y.I., Boeva L.M. (1982): Real-time holographic interferometry of moving objects in oppositely directed beams, Zh. Tekh. Fiz. 52: 1854–1858Google Scholar
  42. [42]
    Nisida M., Saito H. (1964): A new interferometric method of two-dimensional stress analysis, Exp. Mech. 4 (12): 366–376Google Scholar
  43. [43]
    Politch J. (1982): Real-time imaging and strain distribution of an angularly vibrating diffused plate, Opt. Acta 29: 485–492Google Scholar
  44. [44]
    Schumann W., Zürcher J.-P., Cuche D. (1985): Holography and Deformation Analysis (Springer, Heidelberg, Berlin, New York, Tokyo)Google Scholar
  45. [45]
    Sciammarella CA., Rastogi P.K., Jacquot P., Narayanan R. (1982): Holographic moiré in real time Exp. Mech. 22: 52–63Google Scholar
  46. [46]
    Shapiro J.H., Capron B.A., Harney R.C. (1981): Imaging and target detection with a heterodyne-reception optical radar, Appl. Opt. 20: 3292–3313ADSGoogle Scholar
  47. [47]
    Sommargren G.E. (1981): Optical heterodyne profilometry, Appl. Opt. 20: 610–618ADSGoogle Scholar
  48. [48]
    Tiziani H.J. (1982): Real-time metrology with BSO crystals, Opt. Acta 29: 463–470Google Scholar
  49. [49]
    Uyemura T., Yamamoto Y., Tenjimbayashi K., Yokoyama N. (1979): Real-time holographic interferometry with pulsed laser, SPIE Vol. 192: 190–195ADSGoogle Scholar
  50. [50]
    Varner J.R. (1971): Simplified multiple-frequency holographic contouring, Appl. Opt. 10: 212–213ADSGoogle Scholar
  51. [51]
    Vukicevic S., Vinter I., Vukicevic D. (1983): Sandwich hologram interferometry for determination of sacroiliac joint movements, SPIE Vol 370: 129–132Google Scholar

Copyright information

© Springer-Verlag Tokyo 1986

Authors and Affiliations

  • W. Schumann
    • 1
  1. 1.Laboratory of PhotoelasticitySwiss Federal Institute of TechnologyZurichSwitzerland

Personalised recommendations