Advertisement

Integrated Photoelasticity as Tensor Field Tomography

  • H. K. Aben

Abstract

Tomography is a powerful method of determining the internal structure of various objects (Herman 1980). In tomography a certain radiation (X-rays, protons, acoustic waves, light rays, etc.) is passed through a section of the object in many directions, and properties of the radiation (intensity, phase, deflection, etc.) after passing the object are recorded for many rays. Experimental data for a certain value of the angle θ (Fig. 1) are named projection.

Keywords

Scalar Field Tensor Field Dielectric Tensor Axisymmetric Body Light Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aben HK (1966) Optical phenomena in photoelastic models by the rotation of principal axes. Exp Mech 6:13–22CrossRefGoogle Scholar
  2. Aben H (1979) Integrated photoelasticity. McGraw-Hill, New YorkGoogle Scholar
  3. Aben HK, Krasnowski BR, Pindera JT (1984) Nonrectilinear light propagation in integrated photoelasticity of axisymmetric bodies. Trans CSME 8:195–200Google Scholar
  4. Davin M (1969) Sur l’exploitation de l’information donnée par un “effet résultant” recueilli sur chaque sécante traversant une éprouvette et appartenant à un ensemble donné de sécantes. Application à la photoélasticité. C R Acad Sc Paris 269:A 543–A 545Google Scholar
  5. Herman GT (1980) Image reconstruction from projections. Academic Press, New YorkMATHGoogle Scholar
  6. Kubo H, Nagata R (1979) Determination of dielectric tensor fields in weakly inhomogeneous anisotropic media. J Opt Soc Am 69:604–610CrossRefADSGoogle Scholar
  7. Maruyama Y, Iwata K, Nagata R (1976) A method for measuring axially symmetrical refractive index distribution using eikonal approximation. Jap J Appl Phys 15:1921–1927CrossRefADSGoogle Scholar
  8. Sneddon IN (1951) Fourier transforms. McGraw-Hill, New YorkGoogle Scholar
  9. Sweeney DW, Vest CM (1973) Reconstruction of three-dimensional refractive index fields from multidirectional interferometric data. Appl Opt 12:2649–2664CrossRefADSGoogle Scholar
  10. Ugniewski S (1980) Analysis of schlierengrams in refractometry of axi-symmtric objects. Appl Opt 19:3421–3422CrossRefADSGoogle Scholar
  11. Вишняков ΓΗ, Левин ГГ (1982) Оптическая томография фазовых объектов. Опт и спектроск 53:731–735Google Scholar
  12. Зимин ВД, Шахурдин ВИ (1978) Соотношения для теневых и интерференционных методов исследования напряженно-деформированного состояния твердых тел. Приклад мех 14:Nℴ5,25–29Google Scholar

Copyright information

© Springer-Verlag Tokyo 1986

Authors and Affiliations

  • H. K. Aben
    • 1
  1. 1.Institute of CyberneticsAcademy of Sciences of the Estonian SSRTallinnEstonia, USSR

Personalised recommendations