Advertisement

Some New Trials on the Technique of the Method of Caustics

  • K. Shimizu
  • S. Takahashi
  • H. T. Danyluk

Abstract

The correlation between the deviation of light rays and the method of caustics is discussed, and the magnitude of this deviation is shown in diagrams. The application of caustics to stress-frozen models is studied. Lastly, the caustics method is used to determine the stress intensity factor of a crack in a rotating disk.

Keywords

Stress Intensity Factor Isochromatic Fringe Circumferential Crack Isochromatic Fringe Pattern Immersion Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aben HK, Krasnowski BR, Pindera JT (1984) Nonrectilinear light propagation in integrated photoelasticity of axisymmetric bodies. Trans CSME 8:195–200Google Scholar
  2. Blauel JG, Beinert J, Wenk M (1977) Fracture-mechanics investigations of cracks in rotating disks. Exp Mech 17:106–112CrossRefGoogle Scholar
  3. Ishida M (1981) (in Japanese). Trans Jap Soc Mech Eng 47:229CrossRefGoogle Scholar
  4. Klein MV (1970) Optics. Joh Wiley & Sons, Inc, p 28Google Scholar
  5. Manogg P (1966) Die Lichtablenkung durch eine elastisch beanspruchte Platte und die Schattenfiguren von Kreis- und Risskerbe. Glastechnische Berichte 39:323–329Google Scholar
  6. Schroedl MA, McGowan JJ, Smith CW (1974) Determination of stress-intensity factors from photoelastic data with applications to surface-flaw problems. Exp Mech 14: 392–399CrossRefGoogle Scholar
  7. Shimizu K, Shimada H (1978) Determination of stress intensity factor by the method of caustics (in Japanese). J Jap Soc for Nondestructive Inspection 27:399–406Google Scholar
  8. Shimizu K, Takahashi S, Shimada H (1985) Some propositions on caustics and an application to the biaxial-fracture problem. Exp Mech 25:154–160CrossRefGoogle Scholar
  9. Shockey DA, Kalthoff JF, Klemm W, Winkler S (1983) Simultaneous measurements of stress intensity and toughness for fast-running cracks in steel. Exp Mech 23: 140–145CrossRefGoogle Scholar
  10. Theocaris PS (1970) Local yielding around a crack tip in plexiglas. Trans ASME Ser E 37: 409–415Google Scholar
  11. Theocaris PS (1982) Complex stress intensity factors in bent plates with cracks. Trans ASME Ser E 49:87–96MATHGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1986

Authors and Affiliations

  • K. Shimizu
    • 1
  • S. Takahashi
    • 1
  • H. T. Danyluk
    • 2
  1. 1.Department of Mechanical Engineering, Faculty of EngineeringKanto Gakuin UniversityYokohama 236Japan
  2. 2.Department of Mechanical EngineeringUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations