Skip to main content

Adrenergic Receptors and Signal Transduction in Myocardial Hypertrophy, Ischemia, and Failure

  • Chapter
Book cover Cardiac Mechanics and Function in the Normal and Diseased Heart
  • 114 Accesses

Summary

Signal transduction mediated by both α1- and β-adrenergic receptors may be important in the pathogenesis of myocardial hypertrophy, ischemia, and failure. In neonatal rat ventricular myocytes, α1-adrenergic agonism produces cardiac cell enlargement by mechanisms that ultimately involve regulation of genes controlling myocardial protein synthesis. In this system α1-adrenergic receptors do not down-regulate, and second messenger production (inositol trisphosphate) does not undergo desensitization. On the gene level, the rates of transcription of several genes are regulated in a highly complex manner which is currently under intense investigation. Both in animal models and in patients with congestive cardiac failure, down-regulation of β-adrenergic receptors appears to be a constant finding. This at least in part accounts for the reduction of adenylate cyclase activity and myocardial function that is observed. Recent attention has focused on the role of G proteins in heart failure. There appears to be an abnormality in G protein function but whether this results from a reduction in the guanine nucleotide stimulatory protein, Gs, or an increase in the guanine nucleotide inhibitory protein, Gi, or both, has not been established. In an animal model of acute myocardial ischemia, Gs function is diminished, but in the presence of chronic β-blockade there appears to be enhanced coupling between Gs and the β-adrenergic receptor resulting in relative preservation of agonist-stimulated adenylate cyclase activity, particularly in the subepicardium. This observation could account, at least in part, for the beneficial effects of chronic β-adrenergic blockade in acute myocardial ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simpson P, McGrath A, Savion S (1982) Myocyte hypertrophy in neonatal rat heart cultures and its regulation by serum and by catecholamines. Circ Res 51: 787–801

    PubMed  CAS  Google Scholar 

  2. Karliner JS, Simpson P, Honbo N, Woloszyn W (1986) Mechanism and time course of β-receptor desensitization in mammalian cardiac myocytes. Cardiovasc Res 20: 221–228

    Article  PubMed  CAS  Google Scholar 

  3. Karliner JS, Simpson P, Taylor JE (1985) Adrenergic receptor characteristics of cardiac myocytes cultured in serum-free medium in comparison with serum supplemented medium. Biochem Biophys Res Commun 128: 376–382

    Article  PubMed  CAS  Google Scholar 

  4. Simpson P (1983) Norepinephrine-stimulated hypertrophy of cultured neonatal rat myocardial cells is an α1-adrenergic response. J Clin Invest 72: 732–738

    Article  PubMed  CAS  Google Scholar 

  5. Simpson P (1985) Stimulation of hypertrophy of cultured neonatal rat heart cells through an ax-adrenergic receptor and induction of beating through an α1- and βl-adrenergic receptor interaction. Circ Res 56: 884–894

    PubMed  CAS  Google Scholar 

  6. Karliner JS, Barnes P, Hamilton CA, Dollery CT (1979) Alpha-adrenergic receptors in guinea pig myocardium: identification by binding of a new radioligand (3H)-prazosin. Biochem Biophys Res Commun 90: 142–148

    Article  PubMed  CAS  Google Scholar 

  7. Brown JH, Buxton IL, Brunton LL (1985) α1-adrenergic and muscarinic cholinergic stimulation of phosphoinositide hydrolysis in adult rat cardiomyocytes. Circ Res 57: 532–537

    PubMed  CAS  Google Scholar 

  8. Woodcock EA, White LBS, Smith I, McLeod JK (1987) Stimulation of phospha-tidylinositol metabolism in the isolated, perfused rat heart. Circ Res 61: 625–631

    PubMed  CAS  Google Scholar 

  9. Schmitz W, Scholz H, Scholz J, Steinfath M, Lohse M, Purrunen J, Schwabe U (1987) Pertussis toxin does not inhibit the α1-adrenoceptor-mediated effect on inositol phosphate production in the heart. Eur J Pharmacol 134: 377–378

    Article  PubMed  CAS  Google Scholar 

  10. Otani H, Otani H, Das DK (1988) α1-adrenoceptor-mediated phosphoinositide breakdown and inotropic response in rat left ventricular papillary muscles. Circ Res 62: 8–17

    PubMed  CAS  Google Scholar 

  11. Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321

    Article  PubMed  CAS  Google Scholar 

  12. Simpson P, Bishopric N, Coughlin S, Karliner JS, Ordal C, Starksen N, White N, Williams L (1986) Dual trophic affects of the alpha1-adrenergic receptor in cultured neonatal rat heart muscle cells. J Mol Cell Cardiol 18 (Suppl 5): 45–58

    Article  PubMed  CAS  Google Scholar 

  13. Karliner JS, Simpson P, Braun L, Honbo N, Woloszyn W (1985) Alpha1-adrenoceptor regulation of phosphoinositide turnover in hypertrophied myocardial cells. Circulation 72 (Suppl III): 182

    Google Scholar 

  14. Moss J (1987) Signal transduction by receptor-response guanyl nucleotide-binding proteins: modulation by bacterial toxin-catalyzed ADP-ribosylation. Clin Res 35: 451–458

    PubMed  CAS  Google Scholar 

  15. Karliner JS, Kagiya T, Simpson P (in press) Effects of pertussis toxin on α1-agonist-mediated phosphatidylinositide turnover and myocardial cell hypertrophy in neonatal rat ventricular myocytes. Experientia

    Google Scholar 

  16. Henrich CJ, Simpson PC (1988) Differential acute and chronic response of protein kinase C in cultured neonatal rat heart myocytes to α1-adrenergic and phorbol ester stimulation. J Mol Cell Cardiol 20: 1081–1085.

    Article  PubMed  CAS  Google Scholar 

  17. Starksen N, Simpson P, Bishopric N, Coughlin S, Lee WMF, Escobedo JA, Williams L (1986) Cardiac myocyte hypertrophy is associated with c-myc protooncogene expression. Proc Natl Acad Sci USA 83: 8348–8350

    Article  PubMed  CAS  Google Scholar 

  18. Bishopric NH, Simpson PC, Ordahl CP (1987) Induction of the skeletal α1-actin gene in α1-adrenoceptor-mediated hyertrophy of rat cardiac myocytes J Clin Invest 80: 1194–1199

    Article  PubMed  CAS  Google Scholar 

  19. Simpson PC (1988) Role of proto-oncogenes in myocardial hypertrophy. Am J Cardiol 62: 13G–19G

    Article  PubMed  CAS  Google Scholar 

  20. Lee HR, Henderson SA, Reynolds R, Dunnmon P, Yuan D, Chien KR (1988) α1-adrenergic stimulation of cardiac gene transcription in neonatal rat myocardial cells. J Biol Chem 263:7352–7358

    PubMed  CAS  Google Scholar 

  21. Scholz J, Schaefer B, Schmitz W, Scholz H, Steinfath M, Lohse M, Schwabe U, Purrunen J (1988) Alpha-1 adrenoceptor-mediated positive inotropic effect and inositol trisphosphate increase in mammalian heart. J Pharmacol Ther 245: 327–335

    CAS  Google Scholar 

  22. Culling W, Penny WJ, Cunliffe G, Flores NA, Sheridan DJ (1987) Arrhythmogenic and electrophysiological effects of alpha adrenoceptor stimulation during myocardial ischaemia and reperfusion. J Mol Cell Cardiol 19: 251–258

    Article  PubMed  CAS  Google Scholar 

  23. Bristow MR, Ginsburg R, Gilbert EM, Hersberger RE (1987) Heterogeneous regulatory changes in cell surface membrane receptors coupled to a positive inotropic response in the failing human heart. Basic Res Cardiol 82 (Suppl 2): 369–376

    PubMed  Google Scholar 

  24. Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DC, Stinson EB (1982) Decreased catecholamine sensitivity and β-adrenergic-reeeptor density in failing human hearts. N Eng J Med 307: 205–211

    Article  CAS  Google Scholar 

  25. Vatner DE, Vatner SF, Fujii AM, Homey CJ (1985) Loss of high-affinity cardiac beta-adrenergic receptors in dogs with heart failure. J Clin Invest 76: 2259–2264

    Article  PubMed  CAS  Google Scholar 

  26. Mukherjee A, Wong TM, Buja LM, Lefkowitz RJ, Willerson JT (1979) Beta adrenergic and muscarinic cholinergic receptors in canine myocardium. J Clin Invest 64: 1423–1428

    Article  PubMed  CAS  Google Scholar 

  27. Mukherjee A, Bush LR, McCoy KE, Duke KE, Hagler H, Buja LM, Willerson JT (1982) Relationship between β-adrenergic receptor numbers and physiological responses in canine myocardial ischemia. Circ Res 50: 735–741

    PubMed  CAS  Google Scholar 

  28. Maisel AS, Motulsky HJ, Insel PA (1985) Externalization of β-adrenergic receptors promoted by myocardial ischemia. Science 230: 183–186

    Article  PubMed  CAS  Google Scholar 

  29. Thandroyen F, Muntz K, Rosenbaum T, Willerson JT, Ziman B, Buja LM (1989) β-Receptor-adenylate cyclase coupling in hypoxic neonatal rat ventricular myocytes. Am J Physiol 256: H1209–1217

    PubMed  Google Scholar 

  30. Rhee HM, Tyler L (1985) Myocardial ischemic injury and β-adrenergic receptors in perfused working rabbit hearts. Adv Exp Med Biol 191: 281–288

    PubMed  CAS  Google Scholar 

  31. Wolff A, Karliner JS (1988) H2-histaminergic and β-adrenergic adenyl cyclase activation is maintained despite receptor changes and Gs dysfunction during acute myocardial ischemia. Clin Res 36: 328A

    Google Scholar 

  32. Marsh JD, Sweeney KA (1989) ß-Adrenergic receptor regulation during hypoxia in intact cultured heart cells. Am J Physiol 256: H275–281

    PubMed  CAS  Google Scholar 

  33. Rocha-Singh K, Karliner JS (1988) Effects of hypoxia and glucose deprivation on β-adrenergic receptors and cAMP generation in cultured neonatal rat myocardial cells. Clin Res 36: 312A

    Google Scholar 

  34. Vatner DE, Knight DR, Shen YT, Thomas JX Jr, Homey CJ, Vatner SF (1988) One hour of myocardial ischemia in conscious dogs increases β-adrenergic receptors but decreases adenylate cyclase activity. J Mol Cell Cardiol 20: 75–82

    Article  PubMed  CAS  Google Scholar 

  35. Thandroyen FT, Muntz K, Ziman B, Rosenbaum T, Willerson JT, Buja LM (1987) Temporal changes in beta adrenergic receptor-adenylate cyclase activity during acute myocardial ischemia and reperfusion in canine myocardium. Clin Res 35: 576A

    Google Scholar 

  36. Freissmuth M, Schutz W, Weindlmayer-Gottel M, Zimpfer M, Spiss CK. (1987) Effects of ischemia on the canine myocardial β-adrenoeeptor-linked adenylate cyclase system. J Cardiovasc Pharmacol 10: 568–574

    Article  PubMed  CAS  Google Scholar 

  37. Devos C, Robberecht P, Nokin P, Waelbroeck M, Clinet M, Camus JC, Beaufort P, Schoenfeld, Christophe J (1985) Uncoupling between beta-adrenoceptors and adenylate cyclase in dog ischemic myocardium. Naunyn Schmiedebergs Arch Pharmacol 331: 71–75

    Article  PubMed  CAS  Google Scholar 

  38. Longabaugh JP, Vatner DE, Vatner SF, Homcy CJ (1988) Decreased stimulatory guanosine triphosphate binding protein in dogs with pressure-overload left ventricular failure. J Clin Invest 81: 420–424

    Article  PubMed  CAS  Google Scholar 

  39. Horn EM, Barr ML, Morrow BS, Reemtsma K, Cannon PJ, Bilezikian JP (1987) N proteins from human myocardium and lymphocytes are coordinately reduced in congestive heart failure. Circulation 76 (Suppl IV): 309

    Google Scholar 

  40. Karliner JS, Scheinman M (1988) Adenylate cyclase activity coupled to the stimulatory guanine nucleotide binding protein in patients having electrophysiologic studies and either structurally normal hearts or idiopathic myocardial disease. Am J Cardiol 62: 1129–1130

    Article  PubMed  CAS  Google Scholar 

  41. Denniss AR, Colucci WS, Allen P, Marsh JD (1987) Distribution and function of beta adrenergic receptors in congestive heart failure. Circulation 76 (Suppl IV): 432

    Google Scholar 

  42. Bristow M, Ginsburg R, Strosberg, Montgomery W, Minobe W (1984) Pharmacology and inotropic potential of forskolin in the human heart. J Clin Invest 74: 212–223

    Article  PubMed  CAS  Google Scholar 

  43. Vatner DE, Lee DL, Schwarz KR, Longabaugh JP, Fujuii AM, Vatner SF, Homcy CJ (1988) Impaired cardiac muscarinic receptor function in dogs with heart failure. J Clin Invest 81: 1836–1842

    Article  PubMed  CAS  Google Scholar 

  44. Feldman AM, Cates AE, Veazey WB, Hershberger RE, Bristow MR, Baughman KL, Baumgartner WA, Van Dop C (1988) Increase of the 40,000-mol wt pertussis toxin substrate (G protein) in the failing human heart. J Clin Invest 82: 189–197

    Article  PubMed  CAS  Google Scholar 

  45. Glaubiger G, Lefkowitz JR (1977) Elevated β 1-receptor number after chronic propranolol treatment. Biochem Biophys Res Commun 78: 720–725

    Article  PubMed  CAS  Google Scholar 

  46. Cramb G, Griffiths NM, Aiton JF, Simmons NL (1984) Biochemical and physiological adaptation to chronic propranolol treatment in the rat. Biochem Pharmacol 33: 1969–1976

    Article  PubMed  CAS  Google Scholar 

  47. Aarons RD, Molinoff PB (1982) Changes in the density of beta adrenergic receptors in rat lymphocytes, heart and lung after chronic treatment with propranolol. J Pharmacol Exp Ther 221: 439–443

    PubMed  CAS  Google Scholar 

  48. Heilbrunn SM, Shah P, Bristow MR, Valentine HA, Mullin AV, Ginsburg R, Fowler MB (1989) Increased 5-adrenergic receptor density and improved hemodynamic response to catecholamine stimulation during long-term metoprolol therapy in heart failure from dilated cardiomyopathy. Circulation 79: 483–490

    Article  PubMed  CAS  Google Scholar 

  49. Aarons RD, Nies AS, Gal J, Hegstrand LR, Molinoff PB (1980) Elevation of β 1-adrenergic receptor density in human lymphocytes after propranolol administration. J Clin Invest 65: 949–957

    Article  PubMed  CAS  Google Scholar 

  50. Hedberg A, Kempf F Jr, Josephson ME, Molinoff PB (1985) Coexistence of beta-1 and beta-2 adrenergic receptors in the human heart: effects of treatment with receptor antagonists or calcium entry blockers. J Pharmacol Ex Ther 234: 561–568

    CAS  Google Scholar 

  51. Baker SP, Potter LT (1980) Effect of propranolol on β-adrenoceptors in rat hearts. Br J Pharmacol 68: 8–10

    PubMed  CAS  Google Scholar 

  52. Kennedy RH, Donnelly TE Jr (1982) Cardiac responsiveness after acute withdrawal of chronic propranolol treatment in rats. Gen Pharmacol 13: 231–239

    Article  PubMed  CAS  Google Scholar 

  53. Mugge A, Reupcke C, Scholz H (1985) Increased myocardial α-adrenoceptor density in rats chronically treated with propranolol. Eur J Pharmacol 112: 249–252

    Article  PubMed  CAS  Google Scholar 

  54. Chess-Williams RG, Broadley KJ (1984) Ex vivo examination of β 1-adrenoceptor characteristics after propranolol withdrawal J Cardiovasc Pharmacol 6: 701–706

    Article  PubMed  CAS  Google Scholar 

  55. Cooper G IV, Kent RL, McGonigle P, Watanabe AM (1986) Beta adrenergic receptor blockade of feline myocardium. J Clin Invest 77: 441–455

    Article  PubMed  CAS  Google Scholar 

  56. Golf S, Hansson H (1986) Effects of beta blocking agents on the density of beta adrenoceptors and adenylate cyclase response in human myocardium: intrinsic sympathomimetic activity favours receptor upregulation. Cardiovasc Res 20: 637–644

    Article  PubMed  CAS  Google Scholar 

  57. Manning AS, Yellon DM, Coltart DJ, Hearse DJ (1981) Abrupt withdrawal of chronic beta-blockade: adaptive changes in cyclic AMP and contractility. J Mol Cell Cardiol 13: 999–1009

    Article  PubMed  CAS  Google Scholar 

  58. Baumann G, Riess G, Erhardt WD, Felix SB, Ludwig L, Blumel G, Bloomer H (1981) Impaired beta-adrenergic stimulation in the uninvolved ventricle post-acute myocardial infarction: reversible defect due to excessive circulating catecholamine-induced decline in number and affinity of beta-receptors. Am Heart J 101: 569–581

    Article  PubMed  CAS  Google Scholar 

  59. Karliner JS, Stevens M, Honbo N, Hoffman JIE (1989) Effects of acute ischemia in the dog on myocardial blood flow, beta-receptors and adenylate cyclase activity with and without chronic beta-blockade, J Clin Invest 83: 474–481

    Article  PubMed  CAS  Google Scholar 

  60. Bristow MR, Kantrowitz NE, Ginsburg R, Fowler MB (1985) β-adrenergic function in heart muscle disease and heart failure. J Mol Cell Cardiol 17: 41–52

    PubMed  Google Scholar 

  61. Myers JH, Horwitz LD (1978) Hemodynamic and metabolic response after abrupt withdrawal of long-term propranolol. Circulation 58: 196–201

    PubMed  CAS  Google Scholar 

  62. Lindenfeld J, Crawford MH, O’Rourke RA, Levine SP, Montiel MM, Horwitz LD (1980) Adrenergic responsiveness after abrupt propranolol withdrawal in normal subjects and in patients with angina pectoris. Circulation 70: 704–711

    Google Scholar 

  63. Myers MG, Freeman MR, Juma ZA, Wisenberg G (1979) Propranolol withdrawal in angina pectoris: a prospective study. Am Heart J 97: 298–302

    Article  PubMed  CAS  Google Scholar 

  64. Croft CG, Rude RE, Gustafson N, Stone PH, Poole WK, Roberts R, Strauss HW, Raabe DS Jr, Thomas LJ, Jaffe AS, Muller J, Hoagland P, Sobel BE, Passamani ER, Braunwald E, Willerson JT, and the Milis Study Group (1986) Abrupt withdrawal of β-blockade therapy in patients with myocardial infarction: effects on infarct size, left ventricular function, and hospital course. Circulation 73: 1281–1290

    Article  PubMed  CAS  Google Scholar 

  65. Friedman LM, Byington RP, Capone RJ, Furberg CD, Goldstein S, Lichstein E, and Betablocker Heart Attack Trial Research Group (1986) Effect of propranolol in patients with myocardial infarction and ventricular arrhythmia. J Am Coll Cardiol 7: 1–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Karliner, J.S. (1989). Adrenergic Receptors and Signal Transduction in Myocardial Hypertrophy, Ischemia, and Failure. In: Hori, M., Suga, H., Baan, J., Yellin, E.L. (eds) Cardiac Mechanics and Function in the Normal and Diseased Heart. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67957-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67957-8_31

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68020-8

  • Online ISBN: 978-4-431-67957-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics