Advertisement

Neurohumoral Abnormalities and Adrenoceptor Changes in Chronic Heart Failure

  • Masatsugu Hori
  • Katsuomi Iwakura
  • Akira Kitabatake
  • Takenobu Kamada

Summary

In congestive heart failure, sympathetic activity is excessively enhanced, partly due to blunted baroreceptor sensitivity. Renin-angiotensin and arginine-vasopressin levels are also elevated. These neurohumoral factors accelerate systemic vasoconstriction which impedes the cardiac output, and may exert a direct toxic effect on the myocardium. Sustained sympathetic stimulation also induces the down-regulation of myocardial βl-adrenergic receptors which may cause a manifestation of overt heart failure, whereas β-adrenergic receptors in compensatory periods are increased in the experimental animal models. Thus, down-regulation of β -receptors indicates a loss of a compensatory mechanism for cardiac dysfunction. A long-term treatment with β-blocking drugs is effective for some patients with advanced dilated cardiomyopathy. Beneficial effects of β-blocker therapy may be attributed in part to the up-regulation of β -adrenergic receptors, although improvement of symptoms and cardiac function are not directly related to β-receptor changes.

Keywords

Heart Failure Congestive Heart Failure Chronic Heart Failure Plasma Norepinephrine Lower Body Negative Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hirsch AT, Dzau VJ, Creager MA (1987) Baroreceptor function in congestive heart failure: effect on neurohumoral activation and regional vascular resistance. Circulation 75 (Suppl IV): IV36–IV48PubMedGoogle Scholar
  2. 2.
    Higgins CB, Vatner SF, Eckberg DL, Braunwald EG (1972) Alterations in the baroreceptor reflex in conscious dogs with heart failure. J Clin Invest 51: 715–724PubMedCrossRefGoogle Scholar
  3. 3.
    Goldsmith SR, Francis GS, Levine TB, Cohn JN (1983) Regional blood flow response to orthostasis in patients with congestive heart failure. J Am Coll Cardiol 1: 1391–1395PubMedCrossRefGoogle Scholar
  4. 4.
    Creager MA, Faxon DP, Cutler SS, Kohlmann O, Ryan TJ, Gavras H (1986) Contribution of vasopressin to vasoconstriction in patients with congestive heart failure: comparison with the renin-angiotensin system and the sympathetic nervous system, J Am Coll Cardiol 7: 758–765PubMedCrossRefGoogle Scholar
  5. 5.
    Goldsmith SR, Francis GS, Cowley AW, Cohn JN (1981) Reflex control of vasopressin and norepinephrine release in normal man. Circulation 64 (Suppl IV): IV–155Google Scholar
  6. 6.
    Abraham D (1967) The structure of baroreceptors in pathological conditions in man. In: Kezdi P (ed) Baroreceptors and hypertension. Pergamon Oxford, pp 273–291Google Scholar
  7. 7.
    Eckberg DL, Drabinski M, Braunwald E (1971) Defective cardiac parasympathetic control in patients with heart disease, N Engl J Med 285: 877–883PubMedCrossRefGoogle Scholar
  8. 8.
    Ferguson DW, Abboud FM, Mark AL (1984) Selective impairment of baroreflex-mediated vasoconstrictor responses in patients with ventricular dysfunction. Circulation 69: 451–460PubMedCrossRefGoogle Scholar
  9. 9.
    Cody RJ, Franklin KW, Kluger J, Laragh JH (1982) Mechanism governing the postural response and baroreceptor abnormalities in chronic congestive heart failure: effects of acute and long-term converting-enzyme inhibition. Circulation 66: 135–142PubMedCrossRefGoogle Scholar
  10. 10.
    Levine TB, Olivari MT, Carlyle P, Francis GS, Cohn JN (1982) Reversibility by heart transplantation of abnormal neurohumoral control mechanism in chronic congestive heart failure. Circulation 66 (SuppL II): 192Google Scholar
  11. 11.
    Zucker IH, Peterson TV, Gilmore JP (1980) Ouabain increases left atrial stretch receptor discharge in the dog. J Pharmacol Exp Ther 212: 320–324PubMedGoogle Scholar
  12. 12.
    Heesch CM, Abboud FM, Thames MD (1984) Acute resetting of carotid sinus baroreceptors: II. Possible involvement of electrogenic Na+ pump. Am J Physiol 247: H833–H839PubMedGoogle Scholar
  13. 13.
    Stein RD, Stephenson RB, Weaver LC (1984) Central actions of angiotensin II oppose baroreceptor-induced sympathoinhibition. Am J Physiol 246: R13–19PubMedGoogle Scholar
  14. 14.
    Thomas JA, Marks BH (1978) Plasma norepinephrine in congestive heart failure. Am J Cardiol 41: 233–243PubMedCrossRefGoogle Scholar
  15. 15.
    Goldstein DS, McCarty R, Polinsky RJ, Kopin IJ (1983) Relationship between plasma norepinephrine and sympathetic neural activity. Hypertension 5: 552–559PubMedGoogle Scholar
  16. 16.
    Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T: (1984) Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 311: 819–823PubMedCrossRefGoogle Scholar
  17. 17.
    Kenakin TP, Ferris RM (1983) Effects of in vivo β-adrenoceptor down-regulation on cardiac response to prenalterol and pirbuterol. J Cardiovasc Pharmacol 5: 90–97PubMedCrossRefGoogle Scholar
  18. 18.
    Dzau VJ, Colucci WS, Hollenberg NK, Williams GH (1981) Relation of the renin-angiotensin-aldosterone systems to clinical state in congestive heart failure. Circulation 63: 645–651PubMedCrossRefGoogle Scholar
  19. 19.
    Franciosa JA, Wilen MM, Jordan RA (1981) Effects of enalapril, a new angiotensin-converting enzyme inhibitor, in a controlled trial in heart failure. J Am Coll Cardiol 5: 101–107CrossRefGoogle Scholar
  20. 20.
    Creager MA, Massie BM, Faxon DP, Friedman SD, Kramer BL, Weiner DA, Ryan TJ, Topic N, Melidossian CD (1985) Acute and long-term effects of enalapril on the cardiovascular response to exercise and exercise tolerance in patients with congestive heart failure. J Am Coll Cardiol 6: 163–170PubMedCrossRefGoogle Scholar
  21. 21.
    Watkins L, Burton JA, Haber E, Cant JR, Smith FW, Barger AC (1976) The renin-angiotensin-aldosterone system in congestive failure in conscious dogs. J Clin Invest 57: 1606–1617PubMedCrossRefGoogle Scholar
  22. 22.
    Swales JD: (1979) Arterial wall or plasma renin in hypertension? Clin Sci 56: 293–298PubMedGoogle Scholar
  23. 23.
    Packer M, Medina A, Yushak M (1984) Correction of dilutional hyponatremia in severe chronic heart failure by converting-enzyme inhibition. Ann Intern Med 100: 782–789PubMedGoogle Scholar
  24. 24.
    Parker M, Lee WH, Kesser PD, Gottlieb SS, Bernstein JL, Kukin ML (1987) Role of neurohumoral mechanism in determining survival in patients with severe chronic heart failure. Circulation 75 (Suppl IV): IV–80Google Scholar
  25. 25.
    Chang HY, Klein RM, Kunos, G (1982) Selective desensitization of cardiac beta receptors by prolonged in vivo infusion of catecholamines in rats. J Pharmacol Exp Ther 221: 784–789PubMedGoogle Scholar
  26. 26.
    Newman WH (1977) A depressed response of left ventricular contractile force to isoproterenol and norepinephrine in dogs with congestive heart failure. Am Heart J 93: 216–221PubMedCrossRefGoogle Scholar
  27. 27.
    Bristow MR, Ginsburg R, Minobe W, et al. (1982) Decreased catecholamine sensitivity and beta-adrenergic receptor density in failing human hearts, N Engl J Med 307: 205–211PubMedCrossRefGoogle Scholar
  28. 28.
    Fowler MB, Bristow MR, Hopkins DG, et al. (1984) Impaired beta-adrenergic inotropic response in severe heart failure. Circulation 70 (Suppl II): 11–191Google Scholar
  29. 29.
    Feldman AM, Cates AE, Veazey WB, Hershberger RE, Bristow MR, Baughman KL, Baumgartner WA, Cornelis VD (1988) Increase of the 40,000-mol wt toxin substrate (G protein) in the failing human heart. J Clin Invest 82: 189–197PubMedCrossRefGoogle Scholar
  30. 30.
    Karliner S, Barnes P, Brown M, Dollery C (1980) Chronic heart failure in the guinea pig increases cardiac alpha1- and beta-adrenoceptors. Eur J Pharmacol 67: 115–118PubMedCrossRefGoogle Scholar
  31. 31.
    Tamai J, Hori M, Kagiya T, Iwakura K, Iwai K, Kitabatake A, Watanabe Y, Yoshida H, Inoue M, Kamada T (1989) Role of α1-adrenoeeptor activity in progression of cardiac hypertrophy in pressure overloaded guinea pig hearts. Cardiovasc Res 23: 315–322PubMedCrossRefGoogle Scholar
  32. 32.
    Hori M, Koretsune Y, Kagiya T, Watanabe Y, Iwakura K, Iwai K, Kitabatake A, Yoshida H, Inoue M, Kamada T (1989) A compensatory increase in beta-adrenoceptors for postischemic dysfunction following coronary microembolization in dogs. Cardiovasc Res 23: 424–431PubMedCrossRefGoogle Scholar
  33. 33.
    Karliner JS, Alabaster C, Stephens H, Barnes P, Dollery C (1981) Enhanced noradrenaline response in cardiomyopathic hamsters: possible relation to changes in adrenoceptor studies by radioligand binding. Cardiovasc Res 15: 296–304PubMedCrossRefGoogle Scholar
  34. 34.
    Bristow MR (1984) Myocardial beta-adrenergic receptor down regulation in heart failure. Int J Cardiol 5:648–652PubMedCrossRefGoogle Scholar
  35. 35.
    Mickey JV, Tate R, Mullikin D, Lefkowitz RJ (1976) Regulation of adenylate cyclase-coupled beta-adrenergic receptor binding sites by beta adrenergic catecholamines in vitro. Mol Pharmacol 12: 409–419PubMedGoogle Scholar
  36. 36.
    Hayes JS, Pollock GD, Fuller RW (1984) In vivo cardiovascular responses to isoproterenol, dopamine and tyramine after prolonged infusion of isoproterenol. J Pharmacol Exp Ther 231:633–639PubMedGoogle Scholar
  37. 37.
    Bristow MR, Ginsburg R, Minobe WA, Harrison DC, Reitz BA, Stinson EB (1982) Beta-adrenergic receptor measurement in normal and failing human right and left ventricle. Circulation 66 (Suppl II): II–207Google Scholar
  38. 38.
    Strasser RH, Sibley DR, Lefkowitz RJ (1986) A novel catecholamine-activated adenosine cyclic 3′, 5′-phosphate independent pathway for β-adrenergic receptor phosphorylation in wild-type and mutant S49 lymphoma cells: mechanism of homologous desensitization of adenylate cyclase. Biochemistry 25: 1371–1377PubMedCrossRefGoogle Scholar
  39. 39.
    Limas CJ, Limas C (1984) Rapid recovery of cardiac β -adrenergic receptors after isoproterenol-induced “down”-regulation. Circ Res 55: 524–531PubMedGoogle Scholar
  40. 40.
    Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmussen R, Zera P, Menlove R, Shah P, Jamieson S, Stinson EB (1986) β1- and β2-adrenergic receptor subtypes to muscle contraction and selective β1-receptor down-regulation in heart failure. Circ Res 59: 297–309PubMedGoogle Scholar
  41. 41.
    Ginsburg R, Bristow MR, Zera P (1984) Beta2-receptors are coupled to muscle contraction in human ventricular myocardium. Circulation 70 (Suppl II) II–67Google Scholar
  42. 42.
    Ariens EJ (1981) The classification of beta-adrenoceptor. Trends Pharmacol Sci 2: 170–172CrossRefGoogle Scholar
  43. 43.
    Chidsey CA, Braunwald E, Morrow AG (1965) Catecholamine excretion and cardiac stores of norepinephrine in congestive heart failure. Am J Med 39: 442–451PubMedCrossRefGoogle Scholar
  44. 44.
    Brown JH, Buxton IL, Brunton LL (1985) α1-adrenergic and muscarinic cholinergic stimulation of phosphoinositide hydrolysis in adult rat cardiomyocytes, Circ Res 57: 532–537PubMedGoogle Scholar
  45. 45.
    Hayes JS, Bowling N (1987) Role of the alpha agonist activity of dobutamine in mediating cardiac output: effects of prolonged isoproterenol infusion. J Pharmacol Exp Ther 241: 861–869PubMedGoogle Scholar
  46. 46.
    Iwakura K, Hori M, Kagiya T, Watanabe Y, Yoshida H (1988) Increased α1-adrenergic receptors coupled with phosphatidylinositol response augument Ca2+ overload in cardiomyopathic hamster. Circulation 78 (Suppl II): II–334Google Scholar
  47. 47.
    Giles TD, Thomas MG, Sander GE, Quiroz AC (1985) Central alpha-adrenergic agonists in chronic heart failure and ischemic heart disease. J Cardiovasc Pharmacol 7 (Suppl 8): S51-S55PubMedGoogle Scholar
  48. 48.
    Waagstein F, Hjalmarson Å, Varnauskas E, Wallentin I (1975) Effect of chronic beta-adrenergic receptor blockade in congestive cardiomyopathy. Br Heart J: 1022–1036Google Scholar
  49. 49.
    Swedberg K, Hjalmarson Å, Waagstein F, Wallentin I (1975) Prolongation of survival in congestive cardiomyopathyQby beta-receptor blockade. Lancet 1: 1374–1376Google Scholar
  50. 50.
    Swedberg K, Hjalmarson Å, Waagstein F, Wallentin I (1980) Adverse effects of beta-blockade withdrawal in patients with congestive cardiomyopathy. Br Heart J 44: 134–142PubMedCrossRefGoogle Scholar
  51. 51.
    Fowler MB, Bristow MR, Laser JA, Ginsburg R, Scott LB, Schroelder JS (1984) Beta blocker therapy in severe heart failure: improvement related to beta1-adrenergic receptor up-regulation? Circulation 70 (Suppl II): II–112Google Scholar
  52. 52.
    Alderman J. Grossman W (1985) Are β-adrenergic-blocking drugs useful in the treatment of dilated cardiomyopathy? Circulation 71: 854–857PubMedCrossRefGoogle Scholar
  53. 53.
    Binkley PF, Lewe R, Lima J, Unverferth DV, Leier CV (1988) Neurohumoral profile in congestive heart failure: response to β-blockade. J Lab Clin Med III: 393–398Google Scholar
  54. 54.
    Kagiya T, Hori M, Fukunami M, Hoki N, Iwakura K, Kurihara T, Watanabe Y, Kamada T (1987) Role of beta-adrenergic receptors in beta-blocker therapy for chronic heart failure in patients with dilated cardiomyopathy. Circulation 76 (Suppl IV): IV–308Google Scholar
  55. 55.
    Mitchell JH, Linden RJ, Sarnoff SJ (1960) Influence of cardiac sympathetic and vagal nerve stimulation on the relation between left ventricular diastolic pressure and myocardial segment length. Circ Res 8: 1100–1107PubMedGoogle Scholar
  56. 56.
    Fleckenstein A, Janke J, Doring HJ, Pachinger O (1973) Calcium overload as the determinant factor in the production of catecholamine-induced myocardial lesions. Recent Adv Study Cardiac Structure Metab 2: 455–466Google Scholar
  57. 57.
    Ozaki H, Sato H, Matsuyama T, Ishida Y, Takeda H, Inoue Y (1988) β-blocker prevents failing heart from myocardial stiffening during dynamic exercise. Circulation 78 (Suppl II): II–589Google Scholar
  58. 58.
    Kitakaze M, Weisman HF, Marban E (1988) Contractile dysfunction and ATP depletion after transient calcium overload in perfused ferret hearts. Circulation 77: 685–695PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1989

Authors and Affiliations

  • Masatsugu Hori
  • Katsuomi Iwakura
  • Akira Kitabatake
  • Takenobu Kamada
    • 1
  1. 1.The First Department of MedicineOsaka University School of MedicineOsakaJapan

Personalised recommendations