Dynamics of Left Ventricular Filling

  • Edward L. Yellin


The laws of physics indicate that transmitral filling patterns are uniquely determined by the impedance of the mitral apparatus and the atrioventricular pressure difference. This paper reviews the results of the simultaneous measurement of left atrial and ventricular pressures and mitral flow in the experimental laboratory. The data support the theory: the pressure difference is due to accelerative and dissipative forces. It is now important to determine how disease and stress acutely and chronically affect the properties of both the ventricle and the atrium. With this knowledge, we will be better able to relate the non-invasive measurement of transmitral filling patterns to the active and passive properties of both chambers of the left heart.


Mitral Valve Diastolic Function Heart Sound Ventricular Pressure Left Atrial Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grossman W, Lorell BH (eds) (1988) Diastolic relaxation of the heart. Martinus Nijhoff, BostonGoogle Scholar
  2. 2.
    Spencer MP (ed) (1983) Cardiac Doppler diagnosis. Martinus Nijhoff, BostonGoogle Scholar
  3. 3.
    Kennish A, Yellin EL, Frater RWM (1975) Dynamic stiffness profiles in the left ventricle. J Appl Physiol 39: 665–671PubMedGoogle Scholar
  4. 4.
    Laniado S, Yellin EL, Miller H, Frater RWM (1973) Temporal relation of the first heart sound to closure of the mitral valve. Circulation 47: 1006–1014PubMedGoogle Scholar
  5. 5.
    Laniado S, Yellin EL, Kotler M, Levy L, Stadler J, Terdiman R (1975) A study of the dynamic relations between the mitral valve echogram and phasic mitral flow. Circulation 51: 104–113PubMedGoogle Scholar
  6. 6.
    Yellin EL, Peskin CS, Yoran C, Koenigsberg M, Matsumoto M, Laniado S, McQueen D, Shore D, Frater RWM, (1981) Mechanism of mitral valve motion during diastole. Am J Physiol 241 (Heart Circ Physiol 10): H389–H400PubMedGoogle Scholar
  7. 7.
    Meisner JS, McQueen DM, Ishida Y, Vetter HO, Bortolotti U, Strom JA, Frater RWM, Peskin CS, Yellin EL (1985) Effects of timing of atrial systole on LV filling and mitral valve closure: Computer and dog studies. Am J Physiol 249 (Heart Circ Physiol 18): H604–H619PubMedGoogle Scholar
  8. 8.
    Ishida Y, Meisner JS, Tsujioka K, Gallo JI, Yoran C, Frater RWM, Yellin EL (1986) Left ventricular filling dynamics: influence of left ventricular relaxation and left atrial pressure. Circulation 74: 187–196PubMedCrossRefGoogle Scholar
  9. 9.
    Courtois M, Kovacs SJ Jr, Ludbrook PA (1988) The transmitral pressure-flow velocity relationship: The importance of regional pressure gradients in the left ventricle. Circulation 78: 661–671PubMedCrossRefGoogle Scholar
  10. 10.
    Choong CY, Abascal VM, Thomas JD, Guerrero JL, McGlew S, Weyman AE (1988) Combined influence of ventricular loading and relaxation on the transmitral flow velocity profile in dogs measured by Doppler echocardiography. Circulation 78: 672–683PubMedCrossRefGoogle Scholar
  11. 11.
    Keren G, Sherez J, Megidish R, Levitt B, Laniado S (1985) Pulmonary venous flow pattern—its relationship to cardiac dynamics. Circulation 71: 1105–1112PubMedCrossRefGoogle Scholar
  12. 12.
    Van de Werf F, Minten J, Carmeliet P, De Geest H, Kesteloot H (1984) The genesis of the third and fourth heart sounds: a pressure-flow study in dogs. J Clin Invest 73: 1400–1407PubMedCrossRefGoogle Scholar
  13. 13.
    Nolan SP, Dixon SH, Fisher RD, Morrow AG (1969) The influence of atrial contraction and mitral valve mechanics on ventricular filling. Am Heart J 77: 784–791PubMedCrossRefGoogle Scholar
  14. 14.
    McQueen DM, Peskin CS, Yellin EL (1982) Fluid dynamics of the mitral valve: physiological aspects of a mathematical model. Am J Physiol 242 (Heart and Circ Physiol 11): H1095–H1110PubMedGoogle Scholar
  15. 15.
    Meisner JS, Ishida Y, Tsujioka K, Gallo JI, Yoran C, Frater RWM, Yellin EL (1984) Effect of spontaneous variation in heart rate on atrial contribution to left ventricular filling in the conscious dog: analysis by electromagnetic phasic mitral flowmetry. (abstract) Circulation 70: 11–237Google Scholar
  16. 16.
    Yellin EL, Peskin CS (1975) Large amplitude pulsatile water flow across an orifice. J Dynamic Systems, Measurement and Control, Trans ASME, vol 97, series G, no 1, pp 92–95Google Scholar
  17. 17.
    Meisner JS, Pajaro OE, Yellin EL (1986) Investigation of left ventricular filling dynamics: development of a model. Einstein Quart J of Biol and Med 4: 47–57Google Scholar
  18. 18.
    Thomas JD, Weyman AE (1989) Fluid dynamics model of mitral valve flow: Description with in vitro validation. J Am Coll Cardiol 13: 221–233PubMedCrossRefGoogle Scholar
  19. 19.
    David D, Michelson EL, Naito M, Chen CC, Schaffenburg M, Dreifus LS (1983) Diastolic locking of the mitral valve: the importance of atrial systole and intraventricular volume. Circulation 67: 640–645PubMedCrossRefGoogle Scholar
  20. 20.
    Choong CYP, Herrmann HC, Weyman AE, Fifer MA (1987) Preload dependence of Doppler-derived indexes of left ventricular diastolic function in humans. J Am Coll Cardiol 10: 800–808PubMedCrossRefGoogle Scholar
  21. 21.
    Courtois M, Vered Z, Barzilai B, Ricciotti NA, Perez JE, Ludbrook PA (1988) The transmitral pressure-flow velocity relation: effect of abrupt preload reduction. Circulation 78: 1459–1468PubMedCrossRefGoogle Scholar
  22. 22.
    Yellin EL, Yoran C, Frater RWM (1984) Physiology of mitral valve flow. In: Duran C, Angel WW, Oury JH, Johnson AD (eds) Recent progress in mitral valve disease. Butterworths Scientific, London, pp 47–59Google Scholar

Copyright information

© Springer-Verlag Tokyo 1989

Authors and Affiliations

  • Edward L. Yellin
    • 1
  1. 1.Department of Cardiothoracic Surgery and Department of Physiology and BiophysicsAlbert Einstein College of MedicineBronxUSA

Personalised recommendations