Skip to main content

Physiological and Pharmacological Interventions on Coupling of Heart and Arterial Load

  • Chapter
  • 112 Accesses

Summary

Cardiac output (F) increases, but the mean pressure (P) decreases with decreasing peripheral resistance. This inverse relationship is called the pump function graph, which characterizes the heart as a fluid pump. Power output (P × F) depends on the properties of the heart and of the arterial load, and when plotted as a function of cardiac output shows a relative maximum at a certain flow (Fp). This power maximum is relative since it depends not only on flow but also on the “setting of the heart,” i.e., contractility, heart rate, and end-diastolic volume. The actual values of pressure and flow measured in the intact animal define working point (Pw and Fw). A consistent finding in anesthetized, open-thorax cats is that the heart works at the relative maximum of power output (Fw = Fp).

This paper discusses the influence of experimental and pathological conditions on power output. For variations in heart rate and volume loading and under influence of halothane the heart remained working at maximum power output (Fw = Fp). Noradrenalin and the vasodilator Hydralazine caused the working point to shift away from the maximum (Fw > Fp and Fw< Fp, respectively). These results are compatible with the hypothesis that the heart is regulated to work at maximum power output, and that noradrenalin and hydralazine somehow interfere with the regulatory mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Suga H, Sagawa K. Shoukas AA (1973) Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 32: 314–322

    PubMed  CAS  Google Scholar 

  2. Sunagawa K, Maughan WL, Sagawa K (1985) Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res 56: 586–595

    PubMed  CAS  Google Scholar 

  3. Elzinga G, Westerhof N (1973) Pressure and flow generated by the left ventricle against different impedances. Circ Res 32: 178–186

    PubMed  CAS  Google Scholar 

  4. Van den Horn GJ, Westerhof N, Elzinga G (1984) Interaction of heart and arterial system. Ann Biomed Eng 12: 151–162

    Article  PubMed  Google Scholar 

  5. Elzinga G, Westerhof N (1980) Pump function of the feline left heart: changes with heart rate and its bearing on the energy balance. Cardiovasc Res 14: 81–92

    Article  PubMed  CAS  Google Scholar 

  6. Toorop GP, Van der Horn GJ, Elzinga G, Westerhof N (1988) Matching between feline left ventricle and arterial load: optimal external power or efficiency. Am J Physiol 254: H279–285

    PubMed  CAS  Google Scholar 

  7. Van den Horn GJ, Westerhof N, Elzinga G (1986) Feline left ventricle does not always operate at optimum power output. Am J Physiol 250: H961-H967

    PubMed  Google Scholar 

  8. Piene H (1987) Matching between right ventricle and pulmonary bed. In: Yin FCP (ed): Ventricular/vascular coupling. Springer-Verlag, New York, pp 180–202

    Chapter  Google Scholar 

  9. Weber KT, Janicki JS, Reeves RC, Hefner LL, Reeves TJ (1974) Determinants of stroke volume in the isolated canine heart. J Appl Physiol 37: 742–747

    PubMed  CAS  Google Scholar 

  10. Chiu YC, Ballou EW, Ford LE (1987) Force, velocity, and power changes during normal and potentiated contractions of cat papillary muscle. Circ Res 60: 446–458

    PubMed  CAS  Google Scholar 

  11. Daniels M, Noble MIM, ter Keurs HEDJ, Wohlfart B (1984) Velocity of sarcomere shortening in rat cardiac muscle: relationship to force, sarcomere length, calcium and time. J Physiol 355:367–381

    PubMed  CAS  Google Scholar 

  12. Wilcken DEL, Charlier AA, Hoffman JIE, Guz A (1964) Effects of alterations in aortic impedance on the performance of the ventricles. Circ Res 14: 283–293

    PubMed  CAS  Google Scholar 

  13. Myhre ESP, Johansen A, Bjornstad J, Piene H (1986) The effect of contractility and preload on matching between the canine left ventricle and afterload. Circulation 73: 161–171

    Article  PubMed  CAS  Google Scholar 

  14. Burkhoff D, Sagawa K (1986) Ventricular efficiency predicted by an analytical model. Am J Physiol 250: R1021–R1027

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Westerhof, N., Toorop, G.P., Elzinga, G., Schouten, V.J.A. (1989). Physiological and Pharmacological Interventions on Coupling of Heart and Arterial Load. In: Hori, M., Suga, H., Baan, J., Yellin, E.L. (eds) Cardiac Mechanics and Function in the Normal and Diseased Heart. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67957-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67957-8_19

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68020-8

  • Online ISBN: 978-4-431-67957-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics